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Abstract. 

Background: Clustering numerous regression models fitted on the dataset is one of the 

most ubiquitous issues in different fields of sciences. This research aims to compare and to 

classify different regression models with fractional Brownian motion errors which can be 

used for a dataset. Our primary objective is to cluster these models based on fuzzy 

clustering and then to detect a subset of inexpensive predictors to predict a response 

variable reasonably well.  

Results: The results indicate that the power of our proposed approach is very close to the 

one, specially when the sample size increases.  In other hands, the power studies show the 

excellent effectiveness of our proposed approach.  

Conclusion: In this research, Fuzzy clustering method is used to cluster regression models 

with fractional Brownian motion errors that can be fitted on a dataset. Thereafter the 

performance of proposed approach is studied in simulated and real situations. The results 

verify that the introduced technique had excellent power to cluster the models. It indicates 

that our proposed method obtain many advantages. The performance of proposed 

technique is allowable. In addition, the algorithm is not so complicated. Furthermore, this 

method can be employed to compare many models (both linear models and nonlinear 

models). 
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1. Background 



 

Regression models are often applied to explore the relationships between a quantitative 

dependent (response) variable and one or more independent (or explanatory or predictor) 

variables. It will be known that one can apply different regression models on a dataset. In 

numerous disciplines, e.g., biology, climatology, economic, electronic, finance, hydrology, 

and management studies, we can fit the models that were performed in another datasets. For 

instance, they adjusted the previous models for their datasets and would like to compare 

these different models. The authors performed the values of R-square (R2) and root mean 

square error (RMSE) to compare and rank models and choose the model with the largest R2 

or the model with the smallest RMSE as the best. For instance, in biological and 

environmental research, Bahrami et al. [1] executed different kinetic and isotherm models 

to adapt the experimental data of caffeine removal using multi-wall Carbon nanotubes. 

Also, in agricultural and hydrological studies, Zarei and Mahmoudi [2] studied the changes 

in RDIst index affected by different potential evapotranspiration (PET) calculation 

methods. In addition, Zarei et al. [3-4] investigated the changes in spatial sample and trend 

of drought using different autoregressive models. Although the ranking is true, it is not the 

only thing of interest. We are often interested in the model with few parameters and the 

smallest costs. In other words, the researchers are looking for the best choice. Hence if the 

models are statistically equal, then one can adapt the best model with few parameters and 

the smallest cost. For instance, investigate the following situation.  

Stachys pilifera is an endemic plant in Iran. It is a Perennial plant that belongs to the 

Lamiaceae. Its distribution is related to several weather factors such as Rain, Temperature 

and Evaporation and several soil properties such as EC, OC, Silt, N, Fe, Zn, and Cu. The 

dataset contained the values of the distribution of Stachys pilifera, the weather factors and 

the soil properties for 25 samples (fields). We can model and predict the distribution of 

Stachys pilifera based on each of these 10 variables using a set of linear regression models. 

The estimated parameters of the linear regression models are presented in Table 1. These 

factors can determine from 16.2 to 66.22 percent of variation in distribution of Stachys 

pilifera. From Table 1, it can be observed that the factors Rain, Temperature, EC, Cu and 

Evaporation have positive effects on distribution of Stachys pilifera (coefficients are 



 

positive and p-values are less than 0.05). Also, other factors have negative effects on 

distribution of Stachys pilifera (coefficients are negative and p-values are less than 0.05). It 

can be seen that the model based on Fe has the best fitness to the distribution of Stachys 

pilifera, based on higher R2 and less RMSE. 

 

Table 1. Estimated parameters of the linear regression models 

Factor Coefficient Standard Coefficient P-Value (p) R2 RMSE 

Rain 0.060 0.620 0.001 0.385 5.385 

Temperature 0.829 0.507 0.010 0.257 5.915 

EC 5.410 0.402 0.046 0.162 6.285 

OC -5.689 -0.513 0.009 0.264 5.891 

Silt -0.963 -0.530 0.006 0.281 5.822 

N -20.496 -0.781 <0.001 0.610 4.284 

Fe -1.354 -0.813 <0.001 0.662 3.993 

Zn -10.436 -0.740 <0.001 0.548 4.615 

Cu 12.434 0.448 0.025 0.201 6.136 

Evaporation 0.027 0.596 0.002 0.355 5.313 

 

Therefore if we classify these 10 models, then the models in each cluster are 

statistically equal, and one can execute the model with the smallest cost to presage and 

simulate the distribution of Stachys pilifera. 

All of previous works are about comparing two or several regression models. The 

references [5-9] developed procedures to compare the correlation of X and Y in the two 

populations. The references [6, 10-14] presented some approaches to compare the 

relationship of X and Y with the relationship of X and W. The references [12, 15-16] 

discussed techniques to compare the correlation of X and Y with the correlation of W and 

Z.  

This article aims to cluster numerous regression models with fractional Brownian 

motion errors which may be adapted on a dataset. Our primary objective is to cluster these 

models and then to detect a subset of inexpensive predictors to predict a response variable 

reasonably well. In addition, the fuzzy clustering method will be applied to cluster the 

considered models. 



 

2. Methods 

Let 𝑋 = (𝑋1, … , 𝑋𝑘) and 𝑌 be the k-dimensional contingent predictors and response 

variable, respectively. Also suppose 𝐵𝐻(𝑡) is a fractional Brownian motion with Hurst 

index 𝐻 ∈ (0,1), defined by 

𝐵𝐻(𝑡) =
1

Γ (𝐻 +
1
2)

∫(𝑡 − 𝑠)𝐻−
1
2𝑑𝐵(𝑠),

𝑡

0

 

such that B and Γ are respectively Brownian motion process and  gamma function, and 

integration is with respect to the white noise measure 𝑑𝐵(𝑠). It should be noted that 𝐵𝐻(𝑡) 

and 𝐵𝐻(𝑠) are zero-mean processes with auto-covariance function 

𝛾(𝑠, 𝑡) ≔ 𝐶𝑜𝑣(𝐵𝐻(𝑠), 𝐵𝐻(𝑡)) =
1

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻). 

The case 𝐻 =
1

2
, is Wiener process or standard Brownian motion. The cases 𝐻 >

1

2
 and 𝐻 <

1

2
 indicate the positive and negative autocorrelation between increments, respectively.  

In this research, the structures of m linear or nonlinear regression models are expressed 

as follows. 

𝑌 = 𝑓𝑖(𝑋) + 𝐵𝐻𝑖
,    𝑖 = 1, … , 𝑚,                                                               (1) 

such that 𝐵𝐻𝑖
, 𝑖 = 1, … , 𝑚, are independent fractional Brownian motion errors, and 𝑓𝑖 , 𝑖 =

1, … , 𝑚, are functions with unknown parameters. In case of m = 2, one may have the two 

regression models 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝐵𝐻1
, 

and 

𝑌 = 𝛽0 + 𝛽1𝑒𝛽2𝑋 + 𝐵𝐻2
. 

Assume that there are n observations from (𝑋, 𝑌). For these observations, the equations of 

the regression models can be represented by 

𝒀 = 𝒇𝑖(𝑿) + 𝑩𝐻𝑖
,    𝑖 = 1, … , 𝑚,                                                                      (2) 

Let 𝒀 =  (𝑦1, … , 𝑦𝑛)𝑇 as the values of response variable 𝑌, 𝒙 = [𝒙1, … , 𝒙𝑛], 𝒙𝑗 =

 (𝑥𝑗1, … , 𝑥𝑗𝑛)𝑇 ,  as  to the values of the predictors 𝑋, and 𝑩𝐻𝑖
=  (𝐵𝐻𝑖1

, … , 𝐵𝐻𝑖𝑛)𝑇, 𝑖 =

1, … , 𝑚, as 𝑚 independent fractional Brownian motion processes. 

Now, for each regression model, the corresponding equation can be estimated by  



 

�̂�𝑖 = �̂�𝑖(𝒙),    𝑖 = 1, … , 𝑚, 

where �̂�𝑖 =  (�̂�𝑖1, … , �̂�𝑖𝑛)𝑇 , 𝑖 = 1, … , 𝑚,  are estimators of  𝑌. Because 𝐵𝐻𝑖
, 𝑖 = 1, … , 𝑚, are 

zero-mean processes, thus �̂�𝑖1, … , �̂�𝑖𝑛, 𝑖 = 1, … , 𝑚,  are unbiased estimators of  𝑓𝑖(𝑥), 𝑖 =

1, … , 𝑚, respectively.  

Remark 1: In estimation procedure, for linear and nonlinear regression models, the least 

squares approach and the Levenberg-Marquardt algorithm were respectively employed to 

compute  �̂�𝑖.  

The procedure for fuzzy clustering of 𝑓1, … , 𝑓𝑚 can be described as follows. 

Step (1): The m regression models are estimated by 

𝑓𝑖(𝒙),    𝑖 = 1, … , 𝑚.                                                         

Step (2): The predicted values of 𝑌 is simulated based on all m models by 

�̂�𝑖 =  (�̂�𝑖1, … , �̂�𝑖𝑛)𝑇 , 𝑖 = 1, … , 𝑚,                      

Thereafter, we get m predicted values datasets, for dataset  𝑦1, … , 𝑦𝑛. 

Step (3): The fuzzy clustering method [17-18] is applied by using the couples 

(�̂�1,1, … , �̂�1,𝑛), …, (�̂�𝑚,1, … , �̂�𝑚,𝑛). 

  

3. Results 

This section is divided into two parts. In the first subsection, the ability of the proposed 

method is studied based on different simulated datasets. A case study is also given in the 

second subsection. 

3.1. Numerical Results 

In this subsection, several data sets were drawn to study the performance of our 

proposed approach. The simulations are performed by using the R 3.6.1 software. The 

number of repetitions in this simalation is 1000. 

The simulation procedure can be expressed as follows. 



 

Step 1: For each parameter setting (model), we separately generated a sample of size 𝑛. In 

other words, for each model, a sample of size n was provided.  

Step 2: For each sample, the corresponding model was fitted on generated dataset. 

Step 3: The values of  �̂�𝑖 =  (�̂�𝑖1, … , �̂�𝑖𝑛)𝑇 , 𝑖 = 1,2,3, were computed for each model. 

Step 4: The fuzzy clustering method was applied to cluster the values of  �̂�𝑖, 𝑖 = 1,2,3. 

Step 5: Previous steps were repeated 1000 times. 

Step 6: The estimated power of the method (�̂�) was computed by  

�̂� =
𝑇

1000
, 

where T is the number of the runs for which the proposed method can correctly cluster the 

models. 

Remark 2: When the parameter settings of three models are similar, the number of clusters 

is equal to 1 (all models are in 1 cluster). As the parameter settings of two models are 

analogous and another model has different parameter setting, the number of clusters is 

equal to 2 (two models are in cluster 1 and other model in cluster 2). When the parameter 

settings of three models are various, the number of clusters is equal to 3 (each model has 

distinct cluster). 

 

Example 1: Consider the homoscedastic error model given by: 

 𝑌 = 𝛽𝑋 + 𝐵𝐻.   

For the random variable 𝑋 and the Hurst parameter 𝐻, we consider the cases 

𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25), 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5), and 𝐻 ∈ {0.25, 0.75}. In this example, we 

use  𝛽 = 1, 𝛽 ∈ {1, 2},  and 𝛽 ∈ {1, 2, 3},  for the three corresponding models. 

  

Example 2: Consider the heteroscedastic error model given by: 

 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋𝐵𝐻. 

For the random variable 𝑋 and the Hurst parameter 𝐻, we consider the cases 

𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1), 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1), and 𝐻 ∈ {0.25, 0.75}. For these models, we 

utilize (𝛽0, 𝛽1, 𝛽2) = (2,1,2), (𝛽0, 𝛽1, 𝛽2) ∈ {(2,1,2), (0,2,1)}, and (𝛽0, 𝛽1, 𝛽2) ∈ {(2,1,2), 

(0,2,1), (3,2,1)}, for the three corresponding models. 



 

 

Example 3: Consider the model with discrete covariate given by: 

 𝑌 = 1 + 𝛽𝑋 + 𝐵𝐻. 

For the random variable 𝑋 and the Hurst parameter 𝐻, we consider the cases 

𝑋 ~ Geometric (0.4), 𝑋 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) and 𝐻 ∈ {0.25, 0.75}.  In this example, we 

assume that  𝛽 = 1, and 𝛽 ∈ {1, 2}, and 𝛽 ∈ {1, 2,5}, for the three corresponding models. 

 

Example 4: Consider the multiple linear regression model given by: 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 2𝛽2𝑋2 + 𝐵𝐻.    

For the random variables 𝑋1 and 𝑋2 and the Hurst parameter 𝐻, we consider the cases 

𝑋1 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,2),  𝑋2 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(5), 𝑋2 ~ Geometric (0.3) and 𝐻 ∈ {0.25, 0.75}. 

In this example, we assume that  (𝛽0, 𝛽1, 𝛽2) = (2,1,2), (𝛽0, 𝛽1, 𝛽2) ∈ {(2,1,2), (0,2,1)}, 

and (𝛽0, 𝛽1, 𝛽2) ∈ {(2,1,2), (0,2,1), (3,2,1)}, for the three corresponding models. 

 

Example 5: Consider the simple nonlinear regression model given by: 

 𝑌 = 𝑒𝑋 + 𝐵𝐻.   

For the random variable 𝑋 and the Hurst parameter 𝐻, we consider the cases 

𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.5), 𝑋 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(5) and 𝐻 ∈ {0.25, 0.75}. In this example, we use  

 𝑌 = 𝑒𝑋 + 𝐵𝐻,  𝑌 = {𝑒𝑋 + 𝐵𝐻, 1 + 𝛽𝑋 + 𝐵𝐻}, and 𝑌 ∈ {𝑒𝑋 + 𝐵𝐻, 1 + 𝛽𝑋 + 𝐵𝐻, 2𝑋 +

𝐵𝐻}, for the three corresponding models. 

 

The values of �̂� for Examples 1-5, can be respectively observed in Tables 2-6. It can 

be concluded that the power of our proposed approach is very close to the one, specially 

when the value of n increases.  In other words, the results show the excellent effectiveness 

of our proposed approach. It can be seen that our proposed method obtain many 

advantages. The performance of proposed technique is allowable. In addition, the algorithm 

is not so complicated. Furthermore, this approach can be employed to compare many 

models (both linear models and nonlinear models). 

 



 

Table 2. Estimated power of method for Example 1 

 

Number of 

Clusters 

𝑛 

 

𝐻 

 

𝑋 

𝛽 
 

20 

 

50 

 

75 

 

100 
First 

model 

Second 

model 

Third 

model 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 1 1 0.952 0.954 0.963 0.992 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 1 1 0.941 0.967 0.982 0.991 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 1 1 0.954 0.969 0.974 0.986 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 1 1 0.946 0.966 0.971 1.000 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 2 2 0.952 0.954 0.969 0.992 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 2 2 0.947 0.963 0.969 0.976 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 2 2 0.969 0.965 0.967 0.979 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 2 2 0.946 0.960 0.966 0.975 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 3 2 0.952 0.963 0.979 0.983 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 3 2 0.948 0.956 0.975 0.991 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 1 3 2 0.950 0.954 0.971 0.991 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 1 3 2 0.953 0.970 0.979 0.994 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 1 2 0.953 0.970 0.978 1.000 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 1 2 0.958 0.959 0.973 0.984 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 1 2 0.951 0.968 0.983 0.983 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 1 2 0.956 0.954 0.972 1.000 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 2 3 0.949 0.959 0.982 0.986 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 2 3 0.937 0.962 0.985 0.974 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 2 3 0.941 0.957 0.968 0.987 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 2 3 0.938 0.959 0.962 0.984 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 3 3 0.947 0.953 0.975 0.985 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 3 3 0.957 0.967 0.972 1.000 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.25) 1 2 3 3 0.954 0.963 0.968 0.986 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) 1 2 3 3 0.961 0.975 0.986 0.977 

 

Table 3. Estimated power of method for Example 2 

 

Number of 

Clusters 

𝑛 

𝐻 𝑋 

(𝛽0, 𝛽1, 𝛽2) 
 

20 

 

50 

 

75 

 

100 
First 

model 

Second 

model 

Third 

model 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (2,1,2) 1 0.946 0.964 0.981 0.985 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (2,1,2) 1 0.949 0.963 0.965 0.974 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (2,1,2) 1 0.953 0.960 0.979 0.996 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (2,1,2) 1 0.954 0.965 0.976 0.987 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (0,2,1) 2 0.965 0.971 0.964 0.979 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (0,2,1) 2 0.944 0.967 0.961 0.993 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (0,2,1) 2 0.955 0.964 0.968 0.986 



 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (0,2,1) 2 0.953 0.955 0.974 0.989 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (3,2,1) 2 0.933 0.972 0.977 0.988 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (3,2,1) 2 0.941 0.973 0.979 0.976 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (2,1,2) (3,2,1) 2 0.936 0.970 0.984 1.000 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (2,1,2) (3,2,1) 2 0.961 0.963 0.979 1.000 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (2,1,2) 2 0.948 0.966 0.982 0.980 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (2,1,2) 2 0.933 0.961 0.976 0.997 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (2,1,2) 2 0.951 0.967 0.978 0.976 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (2,1,2) 2 0.954 0.954 0.973 0.985 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (0,2,1) 3 0.935 0.968 0.980 0.980 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (0,2,1) 3 0.958 0.978 0.973 0.996 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (0,2,1) 3 0.938 0.964 0.973 0.980 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (0,2,1) 3 0.954 0.971 0.968 0.993 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (3,2,1) 3 0.936 0.969 0.967 0.986 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (3,2,1) 3 0.940 0.967 0.980 0.993 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,1) (2,1,2) (0,2,1) (3,2,1) 3 0.968 0.963 0.975 0.989 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1) (2,1,2) (0,2,1) (3,2,1) 3 0.954 0.968 0.972 0.981 

 

Table 4. Estimated power of method for Example 3 

 

Number of 

Clusters 

𝑛 

𝐻 𝑋 

𝛽 
 

20 

 

50 

 

75 

 

100 
First 

model 

Second 

model 

Third 

model 

0.25 Geometric (0.4) 1 1 1 1 0.951 0.970 0.986 0.986 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 1 1 0.941 0.954 0.964 0.990 

0.75 Geometric (0.4) 1 1 1 1 0.938 0.972 0.975 0.983 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 1 1 0.938 0.953 0.980 0.987 

0.25 Geometric (0.4) 1 1 2 2 0.939 0.964 0.983 1.000 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 2 2 0.939 0.965 0.983 0.996 

0.75 Geometric (0.4) 1 1 2 2 0.935 0.969 0.967 0.993 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 2 2 0.945 0.956 0.981 0.981 

0.25 Geometric (0.4) 1 1 5 2 0.948 0.958 0.976 0.974 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 5 2 0.944 0.958 0.974 0.997 

0.75 Geometric (0.4) 1 1 5 2 0.963 0.972 0.968 0.988 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 1 5 2 0.953 0.973 0.970 0.978 

0.25 Geometric (0.4) 1 2 1 2 0.939 0.963 0.983 0.998 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 1 2 0.964 0.972 0.978 1.000 

0.75 Geometric (0.4) 1 2 1 2 0.957 0.958 0.977 0.992 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 1 2 0.951 0.972 0.974 0.986 

0.25 Geometric (0.4) 1 2 2 3 0.966 0.957 0.983 0.988 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 2 3 0.948 0.957 0.969 0.992 

0.75 Geometric (0.4) 1 2 2 3 0.954 0.965 0.985 0.983 



 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 2 3 0.947 0.968 0.982 0.995 

0.25 Geometric (0.4) 1 2 5 3 0.945 0.972 0.978 0.976 

0.25 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 5 3 0.953 0.972 0.978 0.990 

0.75 Geometric (0.4) 1 2 5 3 0.955 0.956 0.979 0.986 

0.75 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2, 0.7) 1 2 5 3 0.938 0.959 0.978 0.976 

 

Table 5. Estimated power of method for Example 4 

 

Number of 

Clusters 

𝑛 

𝐻 𝑋2 

(𝛽0, 𝛽1, 𝛽2) 
 

20 

 

50 

 

75 

 

100 
First 

model 

Second 

model 

Third 

model 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (2,1,2) 1 0.944 0.968 0.966 0.992 

0.25 Geometric (0.3) (2,1,2) (2,1,2) (2,1,2) 1 0.961 0.956 0.966 0.999 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (2,1,2) 1 0.952 0.961 0.972 0.992 

0.75 Geometric (0.3) (2,1,2) (2,1,2) (2,1,2) 1 0.940 0.961 0.972 0.985 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (0,2,1) 2 0.935 0.960 0.982 0.981 

0.25 Geometric (0.3) (2,1,2) (2,1,2) (0,2,1) 2 0.963 0.963 0.986 0.994 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (0,2,1) 2 0.934 0.974 0.967 0.987 

0.75 Geometric (0.3) (2,1,2) (2,1,2) (0,2,1) 2 0.959 0.973 0.977 0.983 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (3,2,1) 2 0.962 0.964 0.969 1.000 

0.25 Geometric (0.3) (2,1,2) (2,1,2) (3,2,1) 2 0.940 0.969 0.970 0.987 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (2,1,2) (3,2,1) 2 0.956 0.961 0.976 0.994 

0.75 Geometric (0.3) (2,1,2) (2,1,2) (3,2,1) 2 0.953 0.968 0.970 0.997 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (2,1,2) 2 0.959 0.961 0.977 0.986 

0.25 Geometric (0.3) (2,1,2) (0,2,1) (2,1,2) 2 0.962 0.974 0.987 0.984 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (2,1,2) 2 0.931 0.953 0.981 0.989 

0.75 Geometric (0.3) (2,1,2) (0,2,1) (2,1,2) 2 0.954 0.958 0.968 0.996 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (0,2,1) 3 0.952 0.965 0.981 0.988 

0.25 Geometric (0.3) (2,1,2) (0,2,1) (0,2,1) 3 0.945 0.979 0.980 0.986 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (0,2,1) 3 0.967 0.953 0.988 0.979 

0.75 Geometric (0.3) (2,1,2) (0,2,1) (0,2,1) 3 0.951 0.958 0.980 1.000 

0.25 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (3,2,1) 3 0.938 0.952 0.984 0.986 

0.25 Geometric (0.3) (2,1,2) (0,2,1) (3,2,1) 3 0.957 0.961 0.965 0.986 

0.75 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (5) (2,1,2) (0,2,1) (3,2,1) 3 0.960 0.971 0.972 0.985 

0.75 Geometric (0.3) (2,1,2) (0,2,1) (3,2,1) 3 0.948 0.964 0.971 0.992 

 

Table 6. Estimated power of method for Example 5 

 

Number of 

Clusters 

𝑛 

𝐻 𝑋 

𝑌 
 

20 

 

50 

 

75 

 

100 
First 

model 

Second 

model 

Third 

model 



 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

1 0.934 0.976 0.972 0.983 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

1 0.938 0.963 0.970 0.998 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

1 0.959 0.962 0.977 0.986 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

1 0.948 0.954 0.963 0.998 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 1 + 𝛽𝑋 

2 0.947 0.960 0.980 0.979 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 1 + 𝛽𝑋 

2 0.950 0.956 0.970 0.995 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 1 + 𝛽𝑋 

2 0.937 0.957 0.964 0.990 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 1 + 𝛽𝑋 

2 0.958 0.960 0.963 0.991 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 2𝑋 

2 0.947 0.963 0.987 1.000 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 2𝑋 

2 0.962 0.966 0.967 0.996 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 2𝑋 

2 0.946 0.977 0.974 0.989 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 2𝑋 

2 0.965 0.971 0.977 0.990 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

2 0.949 0.958 0.987 0.996 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

2 0.956 0.969 0.980 0.983 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

2 0.947 0.962 0.979 0.995 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 𝑒𝑋 𝑒𝑋 

2 0.953 0.976 0.981 0.986 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 1 + 𝛽𝑋 1 + 𝛽𝑋 

3 0.935 0.969 0.983 0.993 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 1 + 𝛽𝑋 1 + 𝛽𝑋 

3 0.944 0.970 0.982 0.993 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 1 + 𝛽𝑋 1 + 𝛽𝑋 

3 0.963 0.967 0.967 0.991 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 1 + 𝛽𝑋 1 + 𝛽𝑋 

3 0.935 0.962 0.972 0.992 

0.25 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 1 + 𝛽𝑋 2𝑋 

3 0.948 0.972 0.970 0.990 

0.25 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 1 + 𝛽𝑋 2𝑋 

3 0.945 0.968 0.975 0.982 

0.75 𝑁𝑜𝑟𝑚𝑎𝑙 (0,0.5) 
𝑒𝑋 1 + 𝛽𝑋 2𝑋 

3 0.952 0.961 0.965 0.986 

0.75 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (5) 
𝑒𝑋 1 + 𝛽𝑋 2𝑋 

3 0.964 0.970 0.971 0.998 

 

3.2. Case Study  

This subsection is devoted to real world problem (provided in the first section) to 

study the ability of the proposed approach in real situations. As mentioned above, the 

distribution of Stachys pilifera can be modeled and predicted based on weather factors such 

as Rain, Temperature and Evaporation and soil properties consist of EC, OC, Silt, N, Fe, 

Zn, and Cu. If we cluster these 10 models, then the models in each cluster are not 

significantly different. Therefore we need to use the model with the smallest cost to presage 

and simulate the distribution of Stachys pilifera. 

We now execute our proposed method to cluster these models. The results for the 

fuzzy clustering method are provided in Table 7 and Figures 1 and 2. It can be observed 



 

that, there are significant differences between these models and they can be clustered in 

some clusters. Based on Kaiser Index (the number of eigen-values of correlation matrix that 

are more than 1), the number of clusters is determined to be 3 clusters. Based on Table 7 

and Figures 1 and 2, these clusters are as follow: 

First cluster: Temperature, OC, Silt, EC and Cu. 

Second cluster: Rain and Evaporation. 

Third cluster: N, Fe and Zn. 

Therefore, in future researches, when an environmental scientist must predict the 

distribution of Stachys pilifera, based on only one variable of first cluster, he can select the 

variable that its measuring is simplest and has minimum costs (for example, Temperature). 

The candidate in second and third clusters can be Rain and N, respectively. It should be 

noted that in practical cases, first we should cluster the models and select the most powerful 

cluster based on R2 and RMSE values (Third cluster in this real data example) and then 

select the inexpensive predictor in this cluster as the final choice (N in this real data 

example). For future studies investigation of further application and case studies, e.g., [19-

41] are suggested to better validate the proposed method.  

 

Table 7. The precents of membership in different clusters based on Fuzzy clustering method to classify the 

regression models fitted on the distribution of Stachys pilifera 

Factor Cluster 1 Cluster 2 Cluster 3 

Rain 
 0.06446546  0.8677285 0.06780603 

Temperature 
0.76507691  0.1751447 0.05977839 

EC 
 0.74223111  0.1835854 0.07418353 

OC 
0.62210716  0.2935968 0.08429606 

Silt 
 0.71223446  0.2113327 0.07643281 

N 
 0.05497585  0.1231782 0.82184600 

Fe 
 0.06552710  0.1807743 0.75369859 

Zn 
 0.07368989  0.1861433 0.74016681 

Cu 
 0.62671675  0.2793840 0.09389929 

Evaporation 
 0.15605870  0.4833335 0.36060782 

 



 

 

Figure 1. Fuzzy clustering method to classify the regression models fitted on the distribution of Stachys 

pilifera 



 

 

Figure 2. Fuzzy clustering plot to classify the regression models on the distribution of Stachys pilifera 

 

4. Conclusion 

Clustering numerous regression models adapted on the dataset is one of the most 

ubiquitous issues in data modeling and statistical inference. In this work, the fuzzy 

clustering of different regression curves with fractional Brownian motion errors, which can 

be used for a dataset, was considered. Our primary objective was to cluster these models 

and then to find a subset of inexpensive predictors to predict a response variable reasonably 

well. In this research, fuzzy clustering method was used to cluster regression models. 

Thereafter the performance of proposed method was studied in simulated and real 



 

situations. The results verified that the introduced technique had excellent power to cluster 

the models.  
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