
EasyChair Preprint
№ 10570

Comparison Time Execution and Memory Usage
of Dual-Pivot Quick Sort and Parallel Merge
Sort

Kevin Chayadi, Edward Lauwis, Vicky Frandy Lius,
Kristien Margi Suryaningrum and Hanis Amalia Saputri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 16, 2023



Comparison Time Execution and
Memory Usage of Dual-Pivot Quick

Sort and Parallel Merge Sort
Kevin Chayadi
Computer
Science

Bina Nusantara
University

Jakarta, Indonesia
kevin.chayadi@b

inus.ac.id

Edward Lauwis
Computer
Science

Bina Nusantara
University

Jakarta, Indonesia
edward.lauwis@b

inus.ac.id

Vicky Frandy
LiuSs

Computer
Science

Bina Nusantara
University

Jakarta, Indonesia
vicky.lius@binus.

ac.id

Kristien Margi
Suryaningrum
Computer
Science

Bina Nusantara
University

Jakarta, Indonesia
kristien.s@binus.

edu

Hanis Amalia
Saputri
Computer
Science

Bina Nusantara
University

Jakarta, Indonesia
hanis.saputri@bi

nus.ac.id

Abstracts- Various algorithms have been used to
sort data. now it has very algorithms that have
been optimized to be more efficient. We used the
algorithms from quicksort and mergesort but
modified versions, namely dual-pivot quicksort
and parallel mergesort. In this research, we use
a case study method to compare the
performance of dual-pivot quicksort and
parallel mergesort algorithms. We use Java
programming language to implement both
algorithms. Using a dataset of 10000 book ID
data with the integer data type, we will compare
the two algorithms in terms of execution time
and memory usage. The comparison results
show that dual-pivot quicksort is faster than
parallel mergesort and also uses less memory
than parallel mergesort. This shows that the
algorithm of the advanced version of quicksort,
namely dual-pivot quicksort, is better than the
advanced version of mergesort, namely parallel
mergesort. We also identified that dual-pivot on
quicksort has significantly more impact than
parallel mergesort. It can happen because
parallel mergesort only speeds up the queue on
recursive which while it helps but is not very
significant. This research helps in choosing the
best algorithm for sorting in terms of execution
time and memory used so that in the future each
algorithm is used according to its capacity so

that each algorithm can work as efficiently as
possible.
Keywords—Dual-pivot Quicksort, Parallel
Mergesort, Execution Time, Memory Usage.

I. Introduction
Sorting is one of the most essential

things in computer science. Sorting helps
us organize data so it's accessible when we
want to find data or update data. currently,
there are two most popular algorithms,
they are quick sort and merge sort. but the
focus of the algorithm is not the standard
quick sort and merge sort but the advanced
versions of the two algorithms which are
the dual-pivot quick sort and
multithreading mergesorts or so-called as
parallel merge sort.

Since both algorithms are
advanced, they also need resources for
sorting. and that becomes a question to
answer. Therefore, our question is, which
one is faster for sorting? and also which
one consumes less memory?

mailto:kevin.chayadi@binus.ac.id
mailto:kevin.chayadi@binus.ac.id
mailto:edward.lauwis@binus.ac.id
mailto:edward.lauwis@binus.ac.id
mailto:vicky.lius@binus.ac.id
mailto:vicky.lius@binus.ac.id
mailto:kristien.s@binus.edu
mailto:kristien.s@binus.edu
mailto:hanis.saputri@binus.ac.id
mailto:hanis.saputri@binus.ac.id


So in this research, we do a
comparison of resources consumed by
each algorithm. each algorithm will sort
the data as much as 10000 data. from those
10000 data, we sort them starting from
2000, and slowly we add up to 10000 data.
each sequence we analyze the time
required and memory usage of each
algorithm.

II. Theoretical Basis
A. Related Works

Several researchers have studied
dual-pivot quicksort and parallel mergesort
and made contributions to optimizing both
algorithms.

like researchers in 2022 [4] are
optimizing the quicksort algorithm by
using dual parallel partitioning and a
multi-swap algorithm to speed up the
sorting time. The result is dual-pivot
quicksort is much faster than the standard
quicksort [5].

Also, research in 2019 [6], used
parallel mergesort, and it is proven to work
to improve the efficiency of mergesort.
They improved the mergesort by
implementing multi-thread on merge sort,
they not only used 2 threads but 4 threads
to improve the mergesort, and its works
very efficiently.

based on both research, both
algorithms can be advanced so the
algorithms can work more efficiently [2].
So, we will analyze the result after sorting
so that each algorithm can be used as
efficiently as possible.

III. Methodology
This research uses the case study

method. We use book list data which
amounts to more than 10000 ID books that
we get from Kaggle, which will be sorted.

here of the flowchart of what we are going
to do in this research:

Figure 3.1 Flowchart research
in figure 3.1, first we will prepare our
dataset which is 10000 ID books from
Kaggle. after that, we prepare the
programs for sorting. when it's sorting, we
enter the input in increments. as originally
2000, then we record the results. each
sorting of the data stage will be repeated
100 times, we do this to see the algorithm
performance for each input. after that, we
are going to analyze the result.

1. Dual-Pivot Quicksort
Dual-pivot quicksort works in

similar ways to standard quicksort, but
dual-pivot uses two pivots instead of one
[4]. dual-pivot works by dividing the
arrays into 3 subarrays to be sorted, then
every subarray becomes a new array that
will divide into 3 subarrays to be sorted.
this process is repeated recursively until
one element is left because if one element
is left, it can be considered as already
sorted.



Figure 3.1.1 Flowchart dual-pivot quicksort
Figure 3.1.1 shows how the dual-pivot
algorithms work, it divides the arrays into
3 subarrays, and it is done recursively until
one element is left. after one element is
left, all the subarrays are merged back
together. after that, it prints out the result
after sorting.

2. Parallel Mergesort
Parallel Mergesort works just the

same as standard mergesort, just when
dividing the array and when comparing
each element [5]. in standard mergesort,
dividing will be done after the program is
done with another subarray, so the other
subarrays are waiting until it's done, same
thing when comparing each other, some
elements are awaiting to be compared [12].
but when in parallel mergesort, two tasks
can be done in a time, and that's affected
by the process of sorting.

Figure 3.2.1 Flowchart parallel mergesort.
Figure 3.2.1 shows how the parallel
mergesort works. flowchart parallel
mergesort can be said the same as a
standard mergesort flowchart because the
only difference is in the divide and
compare each element part. parallel
mergesort divides two arrays at the same
time, also 2 compares at the same time.

IV. Result
We did a comparison of each

algorithm based on the time needed for
sorting and memory used by using our
dataset which is 10000 book IDs. this is
the result:

Table 4.1 Result comparison table.

input Dual-Pivot
Quicksort

Parallel Mergesort

Time
(in

nanosec
onds)

Memory
Usage (in
kilobytes)

Time
(in

nanoseco
nds)

Memory
Usage (in
kilobytes)

2000 86088 1048.4 189032 1130.16

4000 194193 2097.128 383519 3227.344

6000 303544 3145.6 525608 5338.552

8000 407302 4194.168 631496 7344.064

10000 512850 5242.720 829925 8470.192

table 4.1 shows the comparison of
both algorithms are based on the time and



memory used. The number in the table that
is in the time column, represents the time
needed for sorting that has already been
repeated 100 times for each input to show
its performance each input.

Figure 4.2 Dual-pivot performance for
each input.

As it’s shown in figure 4.2, the dual
pivot quicksort works pretty efficiently,
but it can be seen that the larger the input,
the performance of the algorithm is not
very efficient. figure 4.2 also shows dual
pivot quicksort is not too efficient when
the input size is too big. We do not make a
diagram for the memory usage for each
input because it will produce the output,
because of the same input.

Figure 4.3 Parallel Mergesort performance
for each input

meanwhile figure 4.3 shows the
performance of parallel mergesort. figure
4.3 shows us that the bigger the input, the
more stable the algorithms were. figure 4.2
and figure 4.3 also show the general
difference between the two algorithms,
namely merge sort is strong for large

amounts of data, while quicksort is strong
for small amounts of data, but still, both
can sort data very quickly. again we do not
make a diagram for the memory usage for
each input because it will produce the
same output.

As it's shown in the table, both
algorithms work efficiently, it is proved by
10000 data sorted in less than a second. it
is also shown that mergesort uses memory
about twice that of quicksort. It can also be
seen in the table that the time of quicksort
is a little bit faster than mergesort.

Figure 4.4 Comparison time used (the x-axis
represents an input size, and the y-axis represents

the time).
Figure 4.4, was taken from table

4.1. it shows that dual-pivot is faster than
parallel mergesort. it can happen because
using two pivots is affected significantly
the way it is sorted instead of using one
pivot [3]. but, also when too much data is
to be sorted, there are too many partitions
to be done, which can slow the algorithms
down [3].

whereas parallel mergesort, the
mechanism does not change when using
multi-threading, it's just that the queue
while waiting to be sorted is cut faster, this
is also the reason why parallel mergesort is
still not very good for dealing with small
inputs even it is using multi-threading.
even so, the two algorithms are still
efficient if used according to the size of the
input [13].



Figure 4.5 Comparison of memory usage (the
x-axis represents an input size, and the y-axis

represents the memory).

Figure 4.5 taken from the table 4.1
shows the memory used. figure 4.5 also
shows the memory used for both
algorithms. it shows that dual-pivot
quicksort takes less memory while parallel
mergesort takes a lot of memory because
even in advanced mergesort, it still needs
additional memory to store up the sorted
array [5][9]. that is why parallel mergesort
takes more memory than dual-pivot
quicksort.

V. Conclusion
We conduct this research to see the

difference based on time used and memory
used for both algorithms.

By the experiment that we have
done, we conclude that dual-pivot
quicksort is faster than the parallel
mergsort and takes less memory usage to
use. dual-pivot quicksort takes less time
can happen because using two pivots is
affected significantly the way it is sorted
instead of using one pivot [3]. on the other
hand, using parallel mergesort can indeed
speed up the algorithm but not as
significant as dual pivot on quicksort [12].

So both algorithms are very
efficient for sorting, but still, there are
advantages and disadvantages for both
algorithms. each algorithm has its own
good conditions to be more efficient so it

is important to choose what algorithms
based on its conditions.

References

1. A. Gautam, and A. Naman, (2021). Divide
and Conquer Sorting Techniques (Vol. 8).
IRJET (International Research Journal of
Engineering and Technology).

2. Aljabri, N., Al-Hashimi, M., Saleh, M., &
Abulnaja, O. (2019). Investigating power
efficiency of mergesort. The Journal of
Supercomputing, 75, 6277-6302.

3. Hossain, M. S., Mondal, S., Ali, R. S., &
Hasan, M. (2020, July). Optimizing
complexity of quick sort. In Computing
Science, Communication and Security:
First International Conference, COMS2
2020, Gujarat, India, March 26–27, 2020,
Revised Selected Papers (pp. 329-339).
Singapore: Springer Singapore.

4. Ketchaya, S., & Rattanatranurak, A.
(2022). Analysis and optimization of Dual
Parallel Partition Sorting with OpenMP.
Applied Computing and Informatics,
(ahead-of-print).

5. Altarawneh, M., Inan, U., & Elshqeirat, B.
(2022). Empirical Analysis Measuring the
Performance of Multi-threading in Parallel
Merge Sort. International Journal of
Advanced Computer Science and
Applications, 13(1).

6. Huang, X., Liu, Z., & Li, J. (2019). Array
sort: an adaptive sorting algorithm on
multi‐thread. The Journal of Engineering,
2019(5), 3455-3459.

7. Klaib, M. F., Sara, M. R. A., & Hasan, M.
(2020). A Parallel Implementation of
Dual-Pivot Quick Sort for Computers with
Small Number of Processors. Indonesia
Journal on Computing (Indo-JC), 5(2),
81-90.

8. Buss, S., & Knop, A. (2019). Strategies
for stable merge sorting. In Proceedings of
the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms (pp.
1272-1290). Society for Industrial and
Applied Mathematics.

9. Taiwo, O. E., Christianah, A. O.,
Oluwatobi, A. N., & Aderonke, K. A.
(2020). Comparative study of two divide
and conquer sorting algorithms: quicksort



and mergesort. Procedia Computer
Science, 171, 2532-2540.

10. Neininger, R., & Straub, J. (2018).
Probabilistic Analysis of the Dual-Pivot
Quicksort “Count”. In 2018 Proceedings
of the Fifteenth Workshop on Analytic
Algorithmics and Combinatorics
(ANALCO) (pp. 1-7). Society for
Industrial and Applied Mathematics.

11. Hossain, M. S., Mondal, S., Ali, R. S., &
Hasan, M. (2020, July). Optimizing
complexity of quick sort. In Computing
Science, Communication and Security:
First International Conference, COMS2
2020, Gujarat, India, March 26–27, 2020,
Revised Selected Papers (pp. 329-339).
Singapore: Springer Singapore.

12. Marszałek, Z., Woźniak, M., & Połap, D.
(2018). Fully flexible parallel merge sort
for multicore architectures. Complexity,
2018, 1-19.

13. Blelloch, G. E., Fineman, J. T., Gu, Y., &
Sun, Y. (2020, July). Optimal parallel
algorithms in the binary-forking model. In
Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms
and Architectures (pp. 89-102).

14. Cormen, T. H., Leiserson, C. E., Rivest, R.
L., & Stein, C. (2022). Introduction to
algorithms. MIT press.

15. Marszałek, Z. (2018). Performance tests
on merge sort and recursive merge sort for
big data processing. Technical
Sciences/University of Warmia and
Mazury in Olsztyn, (21 (1), 19-35.


