
EasyChair Preprint

№ 1380

A authentication and access authorization

mechanism on the PaaS platform

Xu Shuangshuang and Zhu Hongliang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 9, 2019

A authentication and access authorization mechanism

on the PaaS platform

Shuangshuang Xu

School of Beijing University of Posts and

Telecommunications

Beijing, China

xiaoxingxingno_1@163.com

Hongliang Zhu

School of Beijing University of Posts and

Telecommunications

Beijing, China

zhuhongliang@bupt.edu.cn

Abstract— With the development of cloud computing and

Docker technology, the continuous delivery technology has

matured. The PaaS platform provides a new software

architecture development architecture that is more suitable for

business expansion and functions. The PaaS platform system

provides agile development and good scalability for multi-

tenancy. At the same time, the security of the system becomes a

key factor for the sustainable development of the system. PaaS

can customize different identity authentication and access control

for different tenant that uses different services. By comparing the

research of identity authentication in the traditional environment,

this paper analyzes the limitations and shortcomings of its use

under the PaaS platform to multi-tenant and focuses on the

characteristics of multi-tenant sharing service on PaaS platform.

Firstly, the identity authentication is realized through the ticket

authentication method. Then, based on the cloud computing

environment and the resource dynamics under multi-tenancy, the

timeliness of cloud resources and other factors, from the

perspective of user service session access control, based on RABC

and UCON model ,the user, authority, resources and control are

proposed. The access control method described by the metadata

is used to ensure the security of the user's access to the cloud

resources in the PaaS environment. The paper elaborates on the

security and usability of the key generation, distribution, update,

and metadata access control processes. Practice shows that the

PaaS environment based on the proposed unified authentication

and metadata access control can effectively protect the dynamic

access control and security isolation of different services for

different tenants. At the same time, according to the built cloud

resource access control model, cloud resource access control

systems with permission separation, user attribute and cloud

resource attribute constraints, lease time constraints, usage rate

control can be flexibly constructed. And the related constraint

elements can be expanded as needed according to the business

requirements, so as to better meet the cloud resource access

control requirements with multi-tenant sharing and dynamic

characteristics in the cloud environment.

Keywords—authorization; authentication; PaaS; Metadata

driven;

I. INTRODUCTION

PaaS transforms the development environment or various
middleware in the cloud into a service that is delivered to users.
The PaaS platform can be divided into two categories, one is
the application deployment and operation platform APaaS

(application platform as a service), and the other is the
integrated development platform IPaaS (Integration platform as
a service) [1]. PaaS provides multi-tenant services. It provides
multi-tenant with full or partial application development,
deployment and testing platforms or development interfaces
that can be accessed[2]. Developers use these tools or
interfaces to develop applications and deploy developed
applications to the PaaS vendor's cloud infrastructure[3].
Tenants do not have to maintain cloud infrastructure such as
servers and operating systems, but can manage their deployed
applications. You can manage the environment parameters that
run your application. PaaS's multi-tenancy feature enables
maximum level of application and database resource sharing,
allowing developers to focus on application development[4].
The PaaS platform enables resource sharing, which inevitably
brings security issues. Access control technology is an
important tool. .Access control can be considered from two
aspects: authentication and authority[5-6]. Authentication
refers to determining the identity of the requester and setting it
at the boundary of the system. It is the first step to enter the
system. Authority refers to a kind of judgment and control of
whether the subject of access allows access to a specific
resource [7]. The authentication method can be based on a
username password, hardware credentials ,biometric
identification. In the PaaS environment, it consists of a large
number of services, frequent calls between services, large
differences in service operating environments, mutual service
impact, high system openness[8]. PaaS design ideas for multi-
tenancy, scalable, customizable, and fault-tolerant. The
Characteristics of PaaS makes the tenant's authority
management more complicated. The traditional method cannot
be fully adapted. However, there is no uniform standard in the
industry to provide reference for the access control
implementation of PaaS for multi-tenancy.

II. RELATED WORK

The cloud platform generally adopts two methods to
complete the authentication:

• access layer c and service layer authorization. If the
internal security of the PaaS system is guaranteed,
access between services is strictly controlled and
encrypted, which can greatly simplify system
implementation

• service authentication and authorization. In addition to
access layer services, each service must be
authenticated.

Traditional access control models, including Discretionary
Access Control (DAC), Mandatory Access Control (MAC),
and Role-based access control (RBAC). Due to the
emergence of virtual technology, the access control
technology in the cloud computing environment has
expanded from user authorization to virtual resource access
and secure access to cloud storage data. The scope of use
and control methods of access control technology have
increased significantly; the various services in the cloud
computing environment are in different security
management domain. When users access resources across
domains, you need to consider issues such as unified
policies, mutual authorization, and resource sharing.
Traditional access control models are no longer able to
meet the new cloud computing architecture requirements.
Cloud computing has a multi-tenant-centric, big data-based
service model, so the access control in cloud computing has
to redefine the concepts of subject and object, which leads
to the optimization of traditional access control models.
The update makes it more suitable for the cloud computing
environment; the problem of complex role permissions,
frequent user changes, numerous administrator roles,
complex levels, and the distribution of permissions is quite
different from the traditional computing model.

At present, the research on the access control model in
cloud computing has different research contents and
methods according to the different functions of the access
control model. Literature [9-11] adopts cloud computing
access control based on task model. The research focuses
on the task angle modeling in the workflow, and
dynamically manages the permissions according to the
different tasks and task states. Every user-level access can
be modeled and analyzed according to task constraints,
which greatly enhances the dynamics of access control in
the cloud. Literature [12-14] uses attribute-based access
control in the field of cloud security. The main focus is on
combining RBAC and ABAC to ensure user privacy and
access control. In addition, time constraints are more
important attribute constraints in the cloud computing
environment. Time factors are everywhere. Users only have
specific roles in specific time periods, and the working
mode of cloud computing is on-time billing. Therefore, it is
necessary to constrain the access control of data in the
cloud through time. Therefore, it is urgent to support the
RBAC model to support complex time-constrained
modeling. The literature [15-17] uses the control model
(use control, UCON for short). UCON includes two
elements of obligations and conditions in addition to the
basic elements of the authorization process. Literature [18-
19] studies cloud computing access control based on BLP
model. The BLP model is a mandatory access control
model, which is mainly used to compare systems with
emphasis on confidentiality or cloud environments, such as
military and financial industries. Currently, research on
BLP models in cloud computing focuses on modifying

traditional BLP models to make them more Suitable for
cloud computing environments

These models cannot be fully copied into the PaaS platform
[20-21].

At present, research related to security domains and tenant
domains in the cloud environment focuses on a certain
local point [22-25], and it lacks systematic analysis and
research work combined with cloud computing dynamics
and multi-tenancy. Lack of relevant reference indicators
that can be used to guide specific practices. At present, the
access control under the PaaS environment has the
following three problems to be solved for multi-tenant
access control:

• There is no effective integration between the identity
authentication method and the tenant access control
policy;

• The PaaS platform cannot dynamically and
conveniently handle the multi-tenant customization of
platform service access policy changes, and the
platform cannot dynamically limit tenant usage.

• Handling multi-tenant authentication and access
control services is not efficient.

In view of the above problems, this paper proposes a multi-
tenant-based customizable access control method in PaaS.
Configure access control policies through metadata
definitions, combining access control with tenant session
mechanisms,

 Firstly, identity authentication is implemented by means
of tickets, which solves the problem of complicated storage
of traditional ticket and low access efficiency. In view of
the above problems, this paper proposes a multi-tenant-
based customizable access control method in PaaS.
Configure access control policies through metadata
definitions, combining access control with tenant session
mechanisms, Firstly, identity authentication is implemented
by means of bills, which solves the problem of complicated
storage of traditional bills and low access efficiency.
Second,
The PaaS platform streamlines access control. The variable
points in the process are described by metadata in the
RABC and UCON models, enabling the platform to
dynamically control tenant access to the platform. Finally,
each service in the PaaS platform uses the agent to
implement security calls and permission access control
within the service. The internal services implement access
control and secure calls to ensure seamless security of the
entire platform. The agent's metadata access control policy
by resolving the identity authentication does not require
additional calls to the remote interface to achieve tenant
access, which can achieve better efficiency. It can reduce
the time for the tenant to request the service on the PaaS to
a certain extent. At the end of the paper, it is verified by
experiments that the efficiency of the ticket customized by
JCE is higher than that of the JWT ticket [26-27], and the
access control efficiency is compared and the metadata is
proved under the two typical application scenarios of using

metadata customization and not using metadata
customization. Access control can dynamically implement
access control, while access efficiency is better than
without metadata for access control. Therefore, in the cloud
computing environment, the metadata-based access control
policy satisfies the dynamic implementation of the multi-
tenant access control of the PaaS platform, and effectively
controls and manages computing resources, storage
resources, and network resources in the cloud computing,
thereby ensuring user friendliness. And with good
performance, it is a good solution.

III. DESIGN OF IDENTITY AUTHENTICATION AND ACCESS

CONTROL

 Services1

Verify Ticket

Everywhere
 Services2

 Services3

Services4

PaaS Server layer

Carry Ticket
Request
Service

Agent

Agent

Agent

Agent

Ticket Center

Common Gateway Interface

Access Controller Metadata Center

API Interface Access Layer

Fig. 1. The overall architecture of the PaaS platform authorization and

Authorization

In view of the usage scenario of PaaS platform, this paper
defines the complex and diverse authentication means of the
whole system as a unified authentication method: access layer
service promulgate tickets, other services verify ticket. Access
layer authenticates key information such as user identity. After
authentication, a string containing user information and
signature information is generated. This process is called "
promulgate tickets ". "Ticket" represents the identity of this
request. The precondition for generating ticket is to prove
identity. The generation of ticket is guaranteed by
authentication, so the ticket themselves can be used as
authentication. After the ticket is generated, as the request is
transmitted backwards, each service receiving the request and
the ticket can authenticate by verifying the validity and identity
consistency of the ticket signature. This process is called "
Verify tickets " . Ticket use RSA public-private key system.
The service that generates the ticket holds the private key, and
the service that verifies the ticket holds the public key.
Authentication and ticketing must be performed in the same
service. Once the two are separated, the generated ticket are not
credible. Metadata customized access control

A. Data Structure Of Tickets

The ticket is designed based on the idea of asymmetric

encryption, and the plaintext of the ticket is designed by

serializing the data of the JCE structure .The content of ticket is

mainly authentication information, that is, all the fields

participating in authentication. “mac_data” performs a Hash

signature calculation on all fields below mac_data (excluding

mac_data itself) to ensure that the ticket is not tampered . At

present, the signature calculation uses the key calculation

method hamc-sha256 (generating a 32-byte signature), and

other people cannot generate the signature even if they know

the plaintext. Request Unique ID: In theory, a ticket in one

request link should not appear in another request link, and the

ID should remain unchanged throughout the request chain.

Create Time: it represents the ticket generation time. It is

mainly used to judge whether the ticket has expired. Tenant ID:

The tenant id information associates the ticket information with

the tenant information. You can obtain the tenant's permission

information through the tenant id in the ticket for access

control.

B. Metadata customized access control

Access Controller Metadata Center

Agent

Metadata collector

Access control manager Trigger

Trigger conditional

metadata
Content metadata

Environmental

variable

Certification Services

Manage
Manage

Controller
load

Fig. 2. Metadata-driven access control details

Combining the dynamics of resources in a cloud computing
environment, the timeliness of cloud resources, and the
diversity of multi-tenant needs, From the perspective of
user service session access control, this paper dynamically
builds a customizable PaaS access control model in PaaS
platform based on RBAC and UCON models.This article
defines the basic metadata for access control as:

Tenant: Tenants are the specific operators of the
application system. Tenants can customize their own
services or the service level. The tenant set is expressed as
U

Role: Has the ability to use specific resources and access
specific services. The character set is represented as R.

User attribute (ATT(U)): Identify tenant capabilities and
characteristics.

Operation: The specific access behavior of the tenant to
the target service in the PaaS platform or the use of the
target resource by the tenant. The Operation set is
represented as O.

Object：Target objects that can be accessed and used in

the PaaS platform. The resource set is represented as B.

Object attribute （ ATT(B) ） : Identify important

information about resources

Permission: it refers to the right of a subject to access an
object in a specific way (such as reading or writing).
Traditional access control treats rights as static elements
independent of the subject's activity. The UCON model is
in the subject's attempt. When accessing the object, the
user's operation authority is dynamically determined
according to the object attributes, permissions, obligations,
and conditions.

Authorization: An important part of the UCON model,
abbreviated as A. It is used to make decisions whether the
subject can operate on the object. the attributes of the
subject and object/the requested permissions (such as read
and write rights) /set of permissions rules which determines
authorization . The authorization in UCON includes both
traditional pre-authorization and authorization based on
different control rules during the access process. In addition,
the update the value of the subject and object is caused the
access, which in turn affects this or other access
decisions.For example, if the tenant accesses the KAFKA
service provided by the PaaS platform, the platform will
monitor the use process. The monitoring result will be an
important basis for the tenant's authority to use the platform
this time or later.

Obligation refers to the action that the subject must
perform before or during the visit, referred to as B.pre-
obligation means that the subject must satisfy certain
conditions before the access request is executed. On-
obligation refers to the condition that the authority must be
continuously satisfied or periodically met during the
exercise. The subject fulfillment obligation is not statically
set in advance, but is dynamically determined according to
the attributes of the subject and object. The performance of
the obligation may update the variable attributes of the
subject and object, and these updates affect the current or
future usage decisions.

Condition refers to the decision factor that is oriented to
the environment or system, abbreviated as C. The condition
evaluates the current hardware attributes or system-related
restrictions to determine whether the user request is
satisfied. For example, the user must use the service at a
specified terminal or a specified time period; or limit the
network traffic to a certain extent.

The PaaS data table is composed of a basic table, a
metadata table, and an extended table. The basic table is a
shared data column, and the RecordID column is used as a
foreign key to associate with the customized data in the
extended table; all tenant's customized data is stored in the
public extended table. The data in the extended table is
increased vertically in terms of scale. Information about
custom fields stored in the metadata table, such as
FieldName, DataType, etc.

PaaS uses the metadata described above to control PaaS
access control through metadata-driven customization
techniques. Throughout the process, the dynamic access
control information in the platform is interpreted as
reasonable metadata, and the process of extracting,
converting, manipulating, and controlling the metadata, and

finally loading the tenant customization information and the
access control information into the application.

The access control metadata information is stored in the
metadata table. The PaaS platform normalizes the access
control into a process, which divides the entire process into
many basic points that are customized through conditional
parameters. In the access control process, the PaaS platform
is customized through operations. The corresponding
configuration conditions are associated to customize these
parts in the base point, so that the variable base points in
the access control flow can be controlled according to the
configuration conditions of the access control metadata,
and the access control is customized, in order to improve
performance efficiency.

IV. TECHNICAL REALIZATION

Promulgate Ticket

Service

API、CGI ...Access

service

Verify Ticket Service

PaaS system internal

service

TicketSystem

Key update script

 Access Controller
Metadata Center

Timely reporting heartbeats,

issuing keys and configuring

Before receiving the access of the

tenant, the agent collects the access

control metadata under the tenant

from the access control

authentication center

Authority

authentication

PaaS system internal
service

agent

PaaS platform fills in metadata

table based on tenant rental

information and service level

Tenants can customize the services

in the PaaS platform

Fig. 3. Identity and access control details

A. Realized Of Ticket

1) Methods Of Promulgating And Checking Tickets.
There are three main ways to promulgate ticket and verify
ticket as shown in the following figure:

• Option 1: Deploy the local agent to pull the key, the key
is stored in the Agent memory, and the service requests
the Agent by means of a local call (such as Unix Socket)
to promulgate ticket and verify ticket.

• Option 2: Deploy the local agent to pull the key. After
the agent obtains the key, it writes it to the local file or
shared memory, and the service directly reads it.

• Option 3: Business services directly request unified
ticketing and ticketing services

Local Agent
Promulgate

Ticket
Service

 verify

ticket

Service

Key

Authentication
information

Tickets

Local Agent

Tickets

validation

results

Key

Promulgate
Ticket

Service

 verify

ticket

Service

Tickets

Private key

Public key

Read private to

promulgate ticket

Tickets

Read public to verify

ticket

Promulgate
Ticket

Service

Tickets

 verify

ticket

Service

Authentication
information

Tickets

Tickets

validation

results

Ticket

center

.

Fig. 4. Three ways for the business to issue tickets or check tickets

TABLE I. THREE SCHEME COMPARING

Three Scheme comparing

Number Scheme Advantage Disadvantage

1

local agent
promulgate

ticket and

verify
ticket

Key security
is better, and

public and

private key
permissions

are much

easier to
control.

There is no

need to
worry about

theft after the

key is sent to
the local, or

the private

key is taken
by the

service

without
permission.

At present,
the

background

service is
mainly

deployed on

the physical
machine. The

private key is

issued
according to

the machine.

Multiple
services in

one machine

must be
checked

tickets. If the

first idea is
used,

resource

isolation
cannot be

performed,

which may
cause a

service to

hang the
agent and

other services

of this
machine to

not issue

tickets and
check tickets

2

Business

direct read

key to
promulgate

ticket and

verify
ticket

Usability is

better. The

Agent is only
responsible

for pulling

the key, even
if it is

hanged, it

does not
affect

promulgating

and verifying
ticket.

Need to rely

on operation

and

maintenance

means to
control the

private key:

the
promulgating

ticket module

can not be
mixed with

the ticket

verifying

Three Scheme comparing

Number Scheme Advantage Disadvantage

module

3

Business

visit
unified

promulgate

and verify
ticket

service

No need to

deploy

Agent,
simple

architecture,

simple logic

The ticketing

and ticket

checking
services

become a

single point
of the whole

system. Once

the problem
occurs, the

global service

will be
unavailable;

authentication

and ticketing
cannot be

completed

together, and

security

cannot be

guaranteed.

The hybrid deployment of Scenario 2 and Scenario 3 is

adopted in the system. For scenario 2, when stored locally, Use

the native IP as part of the key to do another symmetric

encryption to prevent the private key from being copied to

other machines. The ticket uses the global module “global
agent” to deploy an agent (called “ticket agent”) to synchronize

the public and private keys of the ticket on the entire network.

In addition, there is a module “ticket issue” for RPC to acquire

tickets, and “ticket broker” module for RPC verification tickets.

The promulgating of the ticket, for the service that have the

ability to authenticate (such as API check-in service, platform

check-in service, etc.), as in scenario 2, the private key is

directly deployed to these services and the ticket is directly

generated. A scenario in which a ticket needs to be generated

for holding other authentication rights, Referring to the scheme

3, a service of the ticket exchange service “ticket issue” is

specially deployed, and the authentication basis is sent to the

service. After the service is successfully verified, the ticket is

generated and returned, and the ticket is set in the request

protocol package on the client side.

 Set in the request protocol package.

Ticket Checking. Most services, if the ticket agent can be

deployed directly, such as option 2, the ticket can be completed

directly. For some places where the ticket agent cannot be

deployed, or interact with other ticket systems to complete the

ticket verification, the ticket can be completed by RPC

(Scheme 3).
2)Key Issuing

There are two ways to send a key: the agent actively pulls

or the key service actively pushes.

TABLE II. TWO SCHEME COMPARING

Two Scheme comparing

Number Scheme Advantage Disadvantage

1
The Agent

requests the

the Agent

is only

The central

service need

Two Scheme comparing

Number Scheme Advantage Disadvantage

key by

periodically
polling the

central

service

responsible

for pulling
the key,

and the

central
system is

only

responsible
for giving

the key.

The central
system can

obtain the
status of

all agents

according
to the

Agent

polling

request.

to judge

whether
agent have

rignts to get

the private
key and the

public key.

2

The central

service
actively

pushes the

key to the
agent

The global

push is

triggered
only when

the key is
updated,

and When

a new
Agent is

added, you

only need
to push to

new agent.

.

The agent

needs to

listen to the
port. The

central
system

needs to

periodically
check the

machine

changes, and
actively

resend the

failed agent
periodically,

which is

more
complicated.

Option 1 is selected in this system. In order to control the

permissions of different machines to obtain keys (can get the

public or private key). The central system records a white list

of the machines IP and the permissions of these machines

which accessing the ticket system. When the agent comes to

the request, the key storage service will find the authority of

the corresponding machine according to the source IP and

answer the corresponding key. Since the module deployment

situation may change at any time, another scheduled task is

responsible for querying all the machines that access the ticket

system and adding them to the whitelist.

Ticket storage system

Key file

Key

Key Version
Public Key

Private Key

Ticket storage system

1

{Public Key}

{Private Key}

Key

Key Version

Public Key

Private Key

2

{Public Key}

{Private Key}

Key

Key Version

Public Key

Private Key

3

{Public Key}

{Private Key}

Physical machine 1(IP1)

Physical machine 2(IP2)

….

The ticket verifying

machine can get the

public key

The ticket Promulgate

machine can get the

private key

Physical machine 3(IP3)

Physical machine 4(IP4)

….

agent

Physical machine 1

Verify service 1

pull the public key
Verify service 2

Verify service 3

Key file

agent

Physical machine 2

Isuue service 1

pull the private key
Issue service 2

Issue service 3

Fig. 5. Key Issuing

B. Access Control Implementation

user

PK userid

 username

 roleid

role

PK roleid

 rolename

 permissionid

permission

PK permissionid

 sourceid

 objectid

 operate

 obligationid

 conditionid

Obligation

 Obligationid

 souceid

 objectid

 context

Condition

PK conditionid

 sourceid

 context

source

PK sourceid

 sourcetype

 sourcename

Basic table

Extension Table Metatable

FieldMetatable

PK FieldID

 value

FieldMetatable

PK FieldID

 Objectid

 FieldLabel

 FieldType

 limit

ObjectMetatable

PK Objectid

 ObjectName

Fig. 6. Access control metadata table design

1) Metadata collection

The responsibility of the data collector is

to collect metadata for the access control service engine, so

that the services of the PaaS can obtain the access control

information of the platform to the tenant at any time. The data

collector runs on the agent of each service of the PaaS platform.

Before receiving the access of the tenant, the agent collects the

access control metadata under the tenant from the access

control authentication center, including the data table structure,

field attributes, integrity constraints, etc.

2)Metadata Processing

Access control metadata provides data support for the

access control process. This type of metadata primarily consists

of trigger condition metadata and access control content

metadata. (1) Trigger conditions. The trigger condition is a

condition for activating an access restriction, and the trigger

determines the state of the environment variable according to

the trigger condition. The access control of a service contains

one or more limit trigger conditions, and there is a logical

relationship between multiple trigger conditions. A decision

rule contains an environment variable, a threshold, and a

relational operator. (2) Access control template. The template

defines three aspects of information: I access to resource

information; II service restriction content; III trigger

condition. Therefore, the metadata information collected by the

metadata collector is filled into the access control template, and

the template includes a comprehensive description of

the access rights of the services in the PaaS.

V. EXPERIMENT AND TEST

A. Comparison of the efficiency of encoding and decoding

JCE and JWT tickets

Lab Environment:

Container configuration:

Minimum CPU 0.5 core

Minimum Memory 500MB

Maximum CPU 16 core

Maximum Memory 24000 MB

Test ideas:

Under single thread, JCE and JWT are used to encode and

decode 10000000 times for the same data structure, and the

data type tested is String.

Test indicators:

Encoded length, code decoding consumption time, code

decoding rate

Fig. 7. Comparison of the length of tickets encoded by JCE and JWT

Fig. 8. Time-consuming comparison of encoding and decoding

Fig. 9. Example of a figure caption. (figure caption)

Test conclusion:

In terms of Encoded length, code decoding consumption time,

code decoding rate, JCE is better than JWT

B. Control permissions through metadata

Test ideas:

Scenario:

Tenant A applies for development rights to Service B through

the web page form

Test indicators:

Comparison of user operation before and after permission

assignment

Fig. 10. Permission denied

Fig. 11. Have permission

Test conclusion:

Experiments prove that the authority control can be effectively

performed by means of metadata description.

VI. CONCLUSION

This paper focuses on the system authentication and access

control in PaaS. Based on the analysis of the multi-tenant

access to each service on the PaaS platform, the system

establishes the identity authentication and access control

process in the PaaS platform. The way to generate tickets

using JCE is adopted. The certification is implemented. Based

on the RBAC and UCON models, the metadata-driven

approach is used to construct a dynamically customizable

access control for PaaS multi-tenancy. Practice tests show that

the tickets generated by JCE can be efficiently returned to the

identity authentication, and the metadata-driven access control

model can effectively guarantee the flexible separation of

permissions, user attributes and cloud resource attribute

constraints, lease time constraints, usage control, etc. The

cloud resource access control system, and the related

constraint elements can be expanded as needed according to

the business requirements, so as to better meet the cloud

resource access control requirements with multi-tenant sharing

and dynamic characteristics in the cloud environment.

REFERENCES

[1] Yefim V. Natis, Benoit J. Lheureux, Massimo Pezzini, David W.
Cearley, Eric Knipp, Daryl C. Plummer PaaS Road Map: A Continent
Emerging[J].Gartner Research, 2011.

[2] Ribas M, Lima A S, Souza J N D, et al. A Platform as a Service Billing
Model for Cloud Computing Management Approaches[J]. IEEE
Latin America Transactions, 2016, 14(1):267-280.

[3] QI L, ZHANG H F, ZHANG T X, et al.PaaS cloud platform based on
container technology[J].Telecommunication Science,2017,33(4):177-18

[4] Luis Rodero Merino.Building safe PaaS clouds: A survey on
security in multitenant software platforms[J]. Computers and
Security,2012,33(1):96-108.

[5] Shen, J., Liu, D., Liu, Q., Sun, X., & Zhang, Y. (2017). Secure
Authentication in Cloud Big Data with Hierarchical Attribute
Authorization Structure. IEEE Transactions on Big Data, 1–
1.doi:10.1109/tbdata.2017.2705048 authority

[6] Shen, J., Liu, D., Liu, Q., Sun, X., & Zhang, Y. (2017). Secure
Authentication in Cloud Big Data with Hierarchical Attribute
Authorization Structure. IEEE Transactions on Big Data

[7] Lin Guoyuan，He Shan，Huang Hao，et al． Access controlsecurity
model based on behavior in cloud computing en-vironment
［J］． Journal on Communications，2013，33(3) :59 － 66． (in
Chinese)

[8] Abdulrahman A A，Muhammad I S，Saleh B，et al． A dis-tributed
access control architecture for cloud computing［J］． IEEE Software，
2012，29(2) : 36 － 44．

[9] Thomas R, Sandhu R. Task-Based authorization controls (TBAC): A
family of models for active and enterprise oriented

[10] authorization management. In: Proc. of the 11th IFIP WG11.3 Conf. on
Database Security. Lake Tahoe, 1997. 166-181.

Deng JB, Hong F. Task-Based access control model. Ruan Jian Xue
Bao/Journal of Software, 2003,14(1):76-82 (in Chinese with English
abstract). http://www.jos.org.cn/1000-9825/14/76.htm

[11] Li FH, Su M, Shi GZ, Ma JF. Research status and development trends of
access control model. Chinese Journal of Electronics,2012,40(4):805-
813 (in Chinese with English abstract).

[12] Huang JW, David MN, Rakesh B, Jun HH. A framework integrating
attribute-based policies into role-based access control. In: Proc.of the
SACMAT 2012. 2012. 187-196. [doi: 10.1145/2295136.2295170]

[13] Bertino E, Bonatti P, Ferrari E. TRBAC: A temporal role-based access
control model. ACM Trans. on Information and System Security,
2001,4(3):191-223. [doi: 10.1145/501978.501979]

[14] Wang XM, Zhao ZT. Role-Based access control model of temporal
object. Acta Electronica Sinica, 2005,33(9):1634-1638 (in Chinese with
English abstract).

[15] Park J, Sandhu R. Towards usage control models: Beyond traditional
access control. In: Proc. of the 7th ACM Symp. on Access Control
Models and Technologies (SACMAT 2002). 2002. 57-64. [doi:
10.1145/507711.507722]

[16] Krautsevich L, Lazouski A, Martinelli F, Yautsiukhin A. Risk-Aware
usage decision making in highly dynamic systems. In: Proc.of the 5th
Int’l Conf. on Internet Monitoring and Protection. Barcelona: IEEE
Computer Society, 2010. 29-34. [doi: 10.1109/ICIMP.2010.13]

[17] Chu XB, Qin Y. A distributed usage control system based on trusted
computing. Chinese Journal of Computers, 2010,33(1):93-102(in
Chinese with English abstract). [doi: 10.3724/SP.J.1016.2010.00093]

[18] Lin GY, He S, Huang H, Wu JY, Chen W. Access control security
model based on behavior in cloud computing environment. Journal on
Communications, 2012,33(3):59-66 (in Chinese with English abstract).

[19] Weng CL, Luo Y, Li ML, Lu XD. A BLP-based access control
mechanism for the virtual machine system. In: Proc. of the 9th Int’lConf.
for Young Computer Scientists (ICYCS 2008). 2008. [doi:
10.1109/ICYCS.2008.503]

[20] Kritikos, K., Kirkham, T., Kryza, B., & Massonet, P. (2017). Towards a
security-enhanced PaaS platform for multi-cloud applications. Future
Generation Computer Systems, 67, 206–
226.doi:10.1016/j.future.2016.10.008

[21] MT Sandikkaya, AE Harmanci, “Security problems of platform-as-a-
service (paas) clouds and practical solutions to the problems,” 2012
IEEE 31st Symposium on Reliable Distributed Systems,2012
ieeexplore.ieee.org

[22] Cabuk S，Dalton C I，Eriksson K， et al． Towards automated
security policy enforcement in multi-tenant virtual data centers
［J］． Journal of Computer Security，2010，18(1) : 89-121．(11)

[23] Gerges S，Khattab S，Hassan H， et al． Scalable multi-tenant
authorization in highly-collaborative cloud applications
［J］． International Journal of Cloud Computing and Services Science
(IJ-Closer) ，2013，2 (2) : 106-115．

[24] Lu Zhi-gang， Jiang Zheng-wei，Liu Bao-xu． A virtual network
access control method based on VxLAN［J］． Computer Engineering，
2014，40(8) : 86-90．

[25] Paladi N，Michalas A， Gehrmann C． Domain based storage
protection with secure access control for the cloud［C］． Proceedings
of the 2nd International Workshop on Security in Cloud Computing，
ACM，2014: 35-42．

[26] JSON Web Token(JWT). RFC7519. https://tools.ietf.org/html/rfc7519.
2015

[27] 24Badr Eddine Sabir; Mohamed Youssfi; Omar Bouattane;
Authentication and load balancing scheme based on JSON Token For
Multi-Agent Systems. Hakim Allali Procedia Computer Science 2019-
10.1016/j.procs.2019.01.029

