
EasyChair Preprint
№ 13437

Piece by Piece: Assembling a Modular
Reinforcement Learning Environment for Tetris

Maximilian Weichart and Philipp Hartl

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 26, 2024

Piece by Piece: Assembling a Modular Reinforcement
Learning Environment for Tetris

Maximilian Weichart1 and Philipp Hartl1

Abstract: The game of Tetris is an open challenge in machine learning and especially Reinforcement
Learning (RL). Despite its popularity, contemporary environments for the game lack key qualities,
such as a clear documentation, an up-to-date codebase or game related features. This work introduces
Tetris Gymnasium, a modern RL environment built with Gymnasium, that aims to address these
problems by being modular, understandable and adjustable. To evaluate Tetris Gymnasium on these
qualities, a Deep Q Learning agent was trained and compared to a baseline environment, and it was
found that it fulfills all requirements of a feature-complete RL environment while being adjustable to
many different requirements. The source-code and documentation is available at on GitHub2 and can
be used for free under the MIT license.

Keywords: Tetris, Reinforcement Learning, Gymnasium, Library, Software Engineering

1 Introduction

Tetris is a game that is known around the world for its simple yet engaging design, and at
the same time, Reinforcement Learning (RL) has been an active area of research for the last
couple of years. A popular approach to advancing the field has been to develop agents that
can beat human expert agents in various games, such as Chess [Si17] or Dota 2 [Op19], in
hopes of extrapolating and generalizing the concepts learned from solving these problems
and to apply them to problems in the real world. Tetris qualifies as an interesting challenge
to work on, as it can be an NP-hard problem [As20] and has a rich history of both traditional
and RL approaches [AŞ19] to build upon.

2 Related work

Due to Tetris’ popularity, there exist numerous RL environments for it, which can be
categorized into two types: Those which use an emulator to run the binaries of the original
games[Ka24], and those which implement their own game engine and APIs for usage
[Co24; Ng24; Ru22b]. However, several of the existing projects are outdated, making
them incompatible with current Python versions and libraries. There exist up-to-date
environments, but these often lack a clear documentation for their source code and on how
to use them [Bu24]. Furthermore, most of the environments, especially those which are

1 University of Regensburg, Faculty of Informatics and Data Science, Universitätsstraße 31, Germany,
maximilian.weichart@stud.uni-regensburg.de; philipp.hartl@informatik.uni-regensburg.de

2 https://github.com/Max-We/Tetris-Gymnasium

mailto:maximilian.weichart@stud.uni-regensburg.de
mailto:philipp.hartl@informatik.uni-regensburg.de
https://github.com/Max-We/Tetris-Gymnasium

running the original game binaries via an emulator, lack key-game mechanics, such as the
hold-functionality (see Sect. 2.1), and are impractical to customize.

To ensure better comparability of RL algorithms and to ease the transfer from one problem
to another, OpenAI has released Gym [Br16], which is currently maintained under the
name Gymnasium by the Farama Foundation [To24]. It offers environments for various
RL problems via a standardized API and is fully open-source. Based on Gymnasium,
this work presents a modularized, easily understandable and adjustable implementation
of Tetris called Tetris Gymnasium. To ensure a low entry hurdle even for beginners, it
comes with an extensive documentation of both the open-sourced code and its potential
use-cases. Compared to other Tetris environments, Tetris Gymnasium is fully customizable
and up-to-date, employing best practices from software engineering.

2.1 Tetris concepts

Fig. 1: Matrix (1) Queue with random generator (2) Holder (3)

A game of Tetris mainly consists of three components which are displayed in Fig. 1. These
include the matrix ("board"), on which the Tetrominoes ("pieces") move, a queue which
displays the incoming Tetrominoes, and a hold-function, which allows the agent (player) to
swap out Tetrominoes during the game. The Tetrominoes can have different shapes and colors,
and the order in which they appear is determined by a random generator. While playing
the game, agents can score points by clearing lines (rows). The formula for calculating the
score varies from game to game, and many versions of Tetris include special combos, such
as those defined in the Tetris Design Guidelines3.

3 https://ia804609.us.archive.org/27/items/2009-tetris-variant-concepts_202201

https://ia804609.us.archive.org/27/items/2009-tetris-variant-concepts_202201

2.2 Reinforcement learning

By the definition of Russell et al. [Ru22a], in RL the agent finds themselves in a Markov
Decision Process (MDP), which consists of:

• States 𝑆: A set of states that an agent can find themselves in

• Actions 𝐴(𝑠): A set of actions that an agent can choose from in a given state

• Transition Model 𝑃(𝑠′ |𝑠, 𝑎): Transition model from one state to another

• Reward Function 𝑅(𝑠, 𝑎, 𝑠′): Reward function

Tetris Gymnasium is based on Gymnasium and offers a way to model Tetris as an MDPs via
a standardized API, formalizing the problem to be approachable for RL methods.

3 Implementation

The following sections will introduce the technical implementation of Tetris Gymnasium
and how it ensures its modularity, understandability and adjustability.

3.1 Tetromino and Matrix

A fundamental design decision in Tetris Gymnasium is to represent the Tetrominoes and
the matrix as NumPy arrays, making features of the game easily adjustable to different
requirements, e.g. new Tetrominoes or matrix dimensions. The Tetrominoes are therefore
represented as a 2-dimensional arrays, just like the playable matrix which a 2D-array is of
shape (ℎ, 𝑤) and can be adjusted in height ℎ and width 𝑤 size via parameters exposed by
the environment. Additionally, there exists a horizontal padding and a padding 𝑝 on the
bottom of the matrix, resulting in the matrix being of shape (ℎ + 𝑝, 𝑤 + 2𝑝). The padding
𝑝 is a design choice, which eliminates the need to handle index-out-of-range errors when
encountering edge cases of Tetrominoes moving over the edges of the matrix, resulting in
an more robust and generalizable game logic. Each of the values in the array indicates a
pixel of the game, which can be free space (= 0), padding(= 1), or a Tetromino(≥ 2).

3.2 Queue, Holder and Randomizer

As displayed in Fig. 1, the Tetris Design Guidelines define the components next queue, hold
queue and random generator, which are implemented as separate classes TetrominoQueue,
TetrominoHolder and Randomizer. The TetrominoQueue samples the upcoming Tetrominoes
via a Randomizer, which is sampling from a bag by default. The TetrominoHolder lets the

agent swap out the active Tetromino, resetting its position. All three components are used by
the environment and can be modified, e.g. by increasing the length of the queue or changing
the sampling algorithm of the randomizer, without affecting the rest of the game engine.

3.3 Environment and Game Engine

The Gymnasium environment API4 defines a set of methods and attributes that every
environment shall implement, which includes definitions for the observation and action
space as well as methods like step() and reset() to interact with the environment.

In Tetris Gymnasium, the Tetris-class implements the gymnasium.env interface, making the
environment compatible with Gymnasium. It also includes the Tetris game engine which is
composed of attributes such as data structures for the matrix and Tetrominoes, and methods
e.g. for collision-detection or moving Tetrominoes. Following the best practices introduced
by Gymnasium, the environment may be extended and modified using various pre-defined-
or custom-wrappers5, offering a modular way to adjust the environment.

3.4 Documentation

The presented library aims to be easily understandable for its users, including beginners,
and therefore offers three types of documentation. Firstly, the examples directory of the
project includes self-contained scripts that showcase potential use-cases for the library.
Secondly, the repository implements a collection of pre-commit-hooks similar to the official
Gymnasium code-base, configured with a linter, formatter and a docstring parser, which
should lead to a homogeneous code-base. Thirdly, the docstrings are combined with optional
markdown files via Sphinx 6 to offer an extensive documentation on the web7.

4 Evaluation

To test the practical quality of the environment, the Tetris Gymnasium has been used to train
a Deep Q Learning (DQN) agent [Mn13]. The training script is based on dqn_atari.py8
from the CleanRL project [Hu21], which offers various self-contained training scripts
using Gymnasium, and can be found under examples/train_cnn.py. The only adjust-
ments that have been made were lowering total_timesteps to 500,000 and changing the
environment_id-string to the respective environment.

4 https://gymnasium.farama.org/api/env/

5 https://gymnasium.farama.org/api/wrappers/

6 https://www.sphinx-doc.org/en/master/

7 https://max-we.github.io/Tetris-Gymnasium/

8 https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

https://gymnasium.farama.org/api/env/
https://gymnasium.farama.org/api/wrappers/
https://www.sphinx-doc.org/en/master/
https://max-we.github.io/Tetris-Gymnasium/
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

As a comparison to Tetris Gymnasium, the ALE/Tetris-v5 environment from the official
Gymnasium library has been chosen as a baseline. The training script tries to represent a
real-world usage of the environment as closely as possible and includes an extensive setup
for training a DQN-agent with multiple wrappers and detailed logging via the Weights
and Biases platform. By using Tetris Gymnasium in this setting and by opting to make no
significant adjustments of the code provided by the CleanRL project, it should be tested if
the library fulfills the requirements that a feature-complete RL environment should offer.

Both the ALE/Tetris-v5 and Tetris Gymnasium environment were successfully trained on
an accelerated machine and the results have been logged9 in Weights and Biases. While this
evaluation does not focus on the quality of the resulting DQN-agents, it can be seen that the
agents improve in the game in both cases, being able to clear rows more frequency over the
training process, validating that both environments could be to train a DQN-agent.

Overall, it can be shown that Tetris Gymnasium can be directly integrated and used in
the training process for an RL agent without any special adjustments. Additionally, to the
features of the baseline environment ALE/Tetris-v5, Tetris Gymnasium offers many options
for directly customizing the rewards, observation space, action space and Tetris-related
game-features.

5 Conclusion

This paper introduces Tetris Gymnasium, a RL environment that aims to solve the limitations
of other Tetris environments by being modular, understandable and adjustable, eliminating
the need to spend significant time on implementing the game and APIs themselves. We have
shown that the environment offers these advantages over other solutions and can be easily
integrated into existing projects.

The development of Tetris Gymnasium is an ongoing process, and the current iteration of
the environment also has its limitations, such as the lack of advanced scoring mechanisms
(T-Spins), rendered frames not being upscaled, and the library not being published on the
Python Package Index. Besides overcoming these limitations, it would be interesting to
implement the rules and mechanics of a multiagent-version of Tetris, such as Tetr.io10 and
to consider integrating Tetris Gymnasium into the official Gymnasium library.

References
[AŞ19] Algorta, S.; Şimşek, Ö.: The Game of Tetris in Machine Learning, 2019, arXiv: 1905.

01652[cs], url: http://arxiv.org/abs/1905.01652, visited on: 03/18/2024.

9 Tetris Gymnasium: https://api.wandb.ai/links/go-apps-github/45n4shht, Baseline: https://api.wandb.
ai/links/go-apps-github/16c8bmlr

10 https://tetr.io/

https://arxiv.org/abs/1905.01652 [cs]
https://arxiv.org/abs/1905.01652 [cs]
http://arxiv.org/abs/1905.01652
https://api.wandb.ai/links/go-apps-github/45n4shht
https://api.wandb.ai/links/go-apps-github/16c8bmlr
https://api.wandb.ai/links/go-apps-github/16c8bmlr
https://tetr.io/

[As20] Asif, S.; Coulombe, M.; Demaine, E. D.; Demaine, M. L.; Hesterberg, A.; Lynch, J.;
Singhal, M.: Tetris is NP-hard even with $O(1)$ rows or columns, 2020, doi: 10.48550/
arXiv.2009.14336, arXiv: 2009.14336[cs], url: http://arxiv.org/abs/2009.14336,
visited on: 05/13/2024.

[Br16] Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W.:
OpenAI Gym, 2016, doi: 10.48550/arXiv.1606.01540, arXiv: 1606.01540[cs], url:
http://arxiv.org/abs/1606.01540, visited on: 05/13/2024.

[Bu24] Butera, J.: jaybutera/tetrisRL, original-date: 2017-08-11T23:43:54Z, 2024, url: https:
//github.com/jaybutera/tetrisRL, visited on: 05/17/2024.

[Co24] Cox, M.: michiel-cox/Tetris-DQN, original-date: 2019-10-05T12:44:03Z, 2024, url:
https://github.com/michiel-cox/Tetris-DQN, visited on: 05/13/2024.

[Hu21] Huang, S.; Dossa, R. F. J.; Ye, C.; Braga, J.: CleanRL: High-quality Single-file Implemen-
tations of Deep Reinforcement Learning Algorithms, 2021, doi: 10.48550/arXiv.2111.
08819, arXiv: 2111.08819[cs], url: http://arxiv.org/abs/2111.08819, visited on:
05/13/2024.

[Ka24] Kauten, C.: Kautenja/gym-tetris, original-date: 2018-05-24T23:56:21Z, 2024, url: https:
//github.com/Kautenja/gym-tetris, visited on: 05/13/2024.

[Mn13] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Ried-
miller, M.: Playing Atari with Deep Reinforcement Learning, 2013, doi: 10.48550/arXiv.
1312.5602, arXiv: 1312.5602[cs], url: http://arxiv.org/abs/1312.5602, visited on:
05/13/2024.

[Ng24] Nguyen, V.: uvipen/Tetris-deep-Q-learning-pytorch, original-date: 2020-03-29T10:35:44Z,
2024, url: https://github.com/uvipen/Tetris-deep-Q-learning-pytorch, visited on:
05/13/2024.

[Op19] OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.;
Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.;
Pachocki, J.; Petrov, M.; Pinto, H. P. d. O.; Raiman, J.; Salimans, T.; Schlatter, J.; Schnei-
der, J.; Sidor, S.; Sutskever, I.; Tang, J.; Wolski, F.; Zhang, S.: Dota 2 with Large
Scale Deep Reinforcement Learning, 2019, doi: 10.48550/arXiv.1912.06680, arXiv:
1912.06680[cs,stat], url: http://arxiv.org/abs/1912.06680, visited on: 05/13/2024.

[Ru22a] Russell, S. J.; Norvig, P.; Chang, M.-w.; Devlin, J.; Dragan, A.; Forsyth, D.; Goodfellow, I.;
Malik, J.; Mansinghka, V.; Pearl, J.; Wooldridge, M. J.: Artificial intelligence: a modern
approach. Pearson, Harlow, 2022, isbn: 978-1-292-40113-3.

[Ru22b] Russell, T.: tristanrussell/gym-simpletetris, original-date: 2022-03-28T09:50:36Z, 2022,
url: https://github.com/tristanrussell/gym-simpletetris, visited on: 05/13/2024.

[Si17] Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.;
Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap, T.; Simonyan, K.; Hassabis, D.: Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, 2017,
doi: 10.48550/arXiv.1712.01815, arXiv: 1712.01815[cs], url: http://arxiv.org/
abs/1712.01815, visited on: 05/17/2024.

[To24] Towers, M.; Terry, J. K.; Kwiatkowski, A.; Balis, J. U.; de Cola, G.; Deleu, T.; Goulão, M.;
Kallinteris, A.; KG, A.; Krimmel, M.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.; Tai, J. J.;
Tan, A. J. S.; Younis, O. G.: Gymnasium, original-date: 2022-09-08T01:58:05Z, 2024,
url: https://github.com/Farama-Foundation/Gymnasium, visited on: 05/13/2024.

https://doi.org/10.48550/arXiv.2009.14336
https://doi.org/10.48550/arXiv.2009.14336
https://arxiv.org/abs/2009.14336 [cs]
http://arxiv.org/abs/2009.14336
https://doi.org/10.48550/arXiv.1606.01540
https://arxiv.org/abs/1606.01540 [cs]
http://arxiv.org/abs/1606.01540
https://github.com/jaybutera/tetrisRL
https://github.com/jaybutera/tetrisRL
https://github.com/michiel-cox/Tetris-DQN
https://doi.org/10.48550/arXiv.2111.08819
https://doi.org/10.48550/arXiv.2111.08819
https://arxiv.org/abs/2111.08819 [cs]
http://arxiv.org/abs/2111.08819
https://github.com/Kautenja/gym-tetris
https://github.com/Kautenja/gym-tetris
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://arxiv.org/abs/1312.5602 [cs]
http://arxiv.org/abs/1312.5602
https://github.com/uvipen/Tetris-deep-Q-learning-pytorch
https://doi.org/10.48550/arXiv.1912.06680
https://arxiv.org/abs/1912.06680 [cs, stat]
http://arxiv.org/abs/1912.06680
https://github.com/tristanrussell/gym-simpletetris
https://doi.org/10.48550/arXiv.1712.01815
https://arxiv.org/abs/1712.01815 [cs]
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://github.com/Farama-Foundation/Gymnasium

