
EasyChair Preprint
№ 11063

On Feasibly Solving NP-Complete Problems

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 9, 2023



On Feasibly Solving NP-complete Problems
Frank Vega !

GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, US

Abstract
NAE–3SAT consists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment
such that for each clause at least one literal is true and at least one literal is false. NAE–3SAT
remains NP–complete when all clauses are monotone. We create a polynomial time reduction which
converts the monotone version into a bounded number of linear constraints on real numbers. Since
the linear optimization on real numbers can be solved in polynomial time, then we can decide this
NP–complete problem in polynomial time. Certainly, the problem of solving linear constraints on
real numbers is equivalent to solve the particular case when there is a linear optimization without
any objective to maximize or minimize. If any NP–complete can be solved in polynomial time, then
we obtain that P = NP . Moreover, our polynomial reduction is feasible since it can be done in
linear time.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

In 1936, Turing developed his theoretical computational model [10]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [10]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [10]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [10].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [1]. A Turing machine M has an associated input alphabet Σ [1]. For each
string w in Σ∗ there is a computation associated with M on input w [1]. We say that M

accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [1].
Note that, M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [1].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [5]. We
denote by tM (w) the number of steps in the computation of M on input w [1]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [1]. In other words, this

mailto:vega.frank@gmail.com
https://orcid.org/0000-0001-8210-4126


2 On Feasibly Solving NP-complete Problems

means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [1]. A verifier uses additional information,
represented by the string u, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [8].

Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [7]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [5]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [5]. A principal NP–complete problem is SAT [7]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [7]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [5]. For example, the Boolean
formula:

(x1∨ ⇁ x1∨ ⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨ ⇁ x3∨ ⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Using these initial definitions as background, then we may be
able to proceed with our main results.

2 Issues and Motivation

We show there is an NP–complete problem that can be solved in polynomial time. We can
feasibly solve SAT using our algorithm. The whole reduction algorithm runs in polynomial
time since we can reduce SAT to NAE–3SAT in a feasible way: This is a trivial and well-
known polynomial time reduction [9]. We could transform the output of this reduction into



F. Vega 3

a linear optimization problem which has only constraints without any objective to maximize
or minimize. The whole algorithm is based on the problem of linear optimization which is
feasible when we do not restrict the variables to be solely integers [3].

P versus NP is considered as one of the most important open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP ? It
was essentially mentioned in 1955 from a letter written by John Nash to the United States
National Security Agency. However, a precise statement of the P versus NP problem was
introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to
find a proof for this problem have failed. A polynomial time algorithm for some NP–complete
problem would imply that P = NP : This is the goal of this manuscript.

3 Summary of the Main Results

In computational complexity, not-all-equal 3-satisfiability (NAE–3SAT) is an NP–complete
variant of SAT over 3CNF Boolean formulas. NAE–3SAT consists in knowing whether a
Boolean formula ϕ in 3CNF has a truth assignment such that for each clause at least one
literal is true and at least one literal is false [7]. NAE–3SAT remains NP–complete when all
clauses are monotone (meaning that variables are never negated), by Schaefer’s dichotomy
theorem [9]. We define another another problem that we know it can be solved in polynomial
time.

▶ Definition 1. Linear Constraints on Real Numbers (LCRN)
INSTANCE: A set of linear equations and inequalities.
QUESTION: Is there a simultaneously satisfiability to all these constraints on real

solutions?
REMARKS: LCRN ∈ P [3].

We state our principal result.

▶ Theorem 2. LCRN ∈ NP–complete.

After this theorem we can assure the following result:

▶ Theorem 3. P = NP .

Proof. This is a direct proof of Theorem 2. ◀

4 Main Results

4.1 Proof of Theorem 2
Proof. Let’s take a Boolean formula ϕ in 3CNF with n variables and m clauses when all
clauses are monotone. For each variable b in the original formula we introduce the inequality

xb ≥ 0.0

where the real variable xb is bidirectional linked to the Boolean variable b. Now, we iterate
for each clause ci = (a ∨ b ∨ c) and create the linear equation

xa + xb + xc = 1.0



4 On Feasibly Solving NP-complete Problems

according to the real variables xa, xb, xc linked to the Boolean variables from the clause ci in
ϕ. Note that, the clause ci has exactly at least one true literal and at least one false literal
for some truth assignment if and only if the equation

xa + xb + xc = 1.0

can be evaluated into real solutions that has one variable assignment greater than 1
3 and

another lesser than 1
3 , respectively. Certainly, we define that a variable b is true for an

assignment in the Boolean formula ϕ when a solution for xb is greater than 1
3 otherwise b

is false when xb is lesser than 1
3 . Notice, that we ignore the case when xb = 1

3 since we
represent each real variable in its whole decimal representation [3]. Certainly, the decimal
representation of 1

3 is infinite since 1
3 is a fraction of a periodic decimal. Indeed, for every of

these equations of the form of

xa + xb + xc = 1.0

the cases when all the variables comply with xa, xb, xc < 1
3 or xa, xb, xc > 1

3 will not be
actually solutions of the previous equation because these correspond to the cases when all
variables are equally assigned to the same Boolean value for the selected and arbitrary clause
ci = (a ∨ b ∨ c). Finally, we obtain exactly one linear inequality for each variable and exactly
one linear equation for every clause in the formula ϕ. In this way, we make a polynomial time
reduction from ϕ in NAE–3SAT on monotone clauses to a polynomially bounded instance of
LCRN . Moreover, this already explained reduction can be done iterating over the variables
and clauses of ϕ in linear time. Finally, we can see that LCRN is trivially in NP , since we
could check a whole solution for every single constraint in polynomial time. Therefore, the
proof is done. ◀

5 Explanation of their Significance

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [7]. A proof of P = NP will have stunning
practical consequences, because it possibly leads to efficient methods for solving some of the
important problems in computer science [4]. The consequences, both positive and negative,
arise since various NP–complete problems are fundamental in many fields [6].

We should seriously take into account these positive and negative consequences, since
a polynomial time algorithm for an NP–complete problem have been found. Certainly, we
could use our reduction in Theorem 2 to create a polynomial time algorithm for SAT due to
Cook’s Theorem [7]. Indeed, if there is any NP–complete language in P , then every NP can
be solved in polynomial time [4].

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as SAT will break most existing
cryptosystems including: Public-key cryptography, symmetric ciphers and one-way functions
used in cryptographic hashing. These would need to be modified or replaced by information-
theoretically secure solutions not inherently based on P–NP equivalence.

There are positive consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research
are NP–complete, such as some types of integer programming and the traveling salesman
problem [6]. Efficient solutions to these problems have enormous implications for logistics [6].
Many other important problems, such as some problems in protein structure prediction, are
also NP–complete, so this will spur considerable advances in biology [2].



F. Vega 5

Since all the NP–complete optimization problems become easy, everything will be much
more efficient [6]. Transportation of all forms will be scheduled optimally to move people
and goods around quicker and cheaper [6]. Manufacturers can improve their production
to increase speed and create less waste [6]. Learning becomes easy by using the principle
of Occam’s razor: We simply find the smallest program consistent with the data [6]. Near
perfect vision recognition, language comprehension and translation and all other learning
tasks become trivial [6]. We will also have much better predictions of weather and earthquakes
and other natural phenomenon [6].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself [4]. Research mathem-
aticians spend their careers trying to prove theorems, and some proofs have taken decades or
even centuries to be discovered after problems have been stated [4]. For instance, Fermat’s
Last Theorem took over three centuries to be proved [4]. A method that guarantees to
find proofs for theorems, should one exist of a “reasonable” size, would essentially end this
struggle [4].

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, USA, 2009.
2 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model

is Np-complete. Journal of computational biology: a journal of computational molecular cell
biology, 5(1):27–40, 1998. doi:10.1145/279069.279080.

3 Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena scientific Belmont, MA, 1997.

4 Stephen Arthur Cook. The P versus NP Problem. https://www.claymath.org/wp-content/
uploads/2022/06/pvsnp.pdf, June 2022. Clay Mathematics Institute. Accessed 9 September
2023.

5 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

6 Lance Fortnow. The status of the P versus NP problem. Communications of the ACM,
52(9):78–86, 2009. doi:10.1145/1562164.1562186.

7 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

8 Christos Harilaos Papadimitriou. Computational complexity. Addison-Wesley, USA, 1994.
9 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual

ACM symposium on Theory of computing, pages 216–226, 1978. doi:10.1145/800133.804350.
10 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, USA, 2006.

https://doi.org/10.1145/279069.279080
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/800133.804350

	1 Introduction
	2 Issues and Motivation
	3 Summary of the Main Results
	4 Main Results
	4.1 Proof of Theorem 2

	5 Explanation of their Significance

