
EasyChair Preprint
№ 5128

FuSeBMC: An Energy-Efficient Verifier for Finding
Security Vulnerabilities in C Programs

Kaled Alshmrany, Mohannad Aldughaim, Ahmed Bhayat and
Lucas Cordeiro

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 9, 2021

FuSeBMC : An Energy-Efficient Verifier for
Finding Security Vulnerabilities in C Programs

Kaled M. Alshmrany1,2 , Mohannad Aldughaim1 , Ahmed Bhayat1 , and
Lucas C. Cordeiro1

1 University of Manchester, Manchester, UK
2 Institute of Public Administration, Jeddah, Saudi Arabia

Abstract. We describe and evaluate a novel approach FuSeBMC that
exploits fuzzing and BMC engines to detect security vulnerability in C
programs. It explores and analyzes the target C program by injecting
labels that guide those engines to produce test-cases. FuSeBMC also
exploits selective fuzzer to produce test-cases for the labels that fuzzing
and BMC engines could not produce test-cases. Lastly, we manage each
engine’s execution time to improve FuSeBMC ’s energy consumption. As
a result, FuSeBMC guides the fuzzing and BMC engines to explore more
profound in the target C programs and then produce test-cases that
achieve higher coverage with lower energy consumption to detect bugs
efficiently. We evaluated FuSeBMC by participating in Test-Comp 2021
to test the ability of the tool in two categories of the competition, which
are code coverage and bug detection. The competition results show that
FuSeBMC performs well if compared to the state-of-the-art software
testing tools. FuSeBMC achieved 3 awards in the Test-Comp 2021: first
place in the Cover-Error category, second place in the Overall category,
and third place in the Low Energy Consumption.

1 Introduction

Developing software that is secure and bug-free is an extraordinarily challenging
task. Due to the devastating effects vulnerabilities may have, financially or on an
individuals’ well-being, software verification became a necessity [1]. For example,
Airbus found a software vulnerability in the A400M aircraft that caused a crash
in 2015. This vulnerability created a fault in the control units for the engines,
which caused them to power off shortly after taking-off [2]. A software vulner-
ability is best described as a defect or weakness in software design [3]. That
design can be verified by Model Checking [4] or Fuzzing [5]. Model-checking
and fuzzing are two techniques that are well suited to find bugs. In particular,
model-checking has proven to be one of the most successful techniques based
on its use in research and industry [6]. This paper will focus on fuzzing and
bounded model checking (BMC) techniques for code coverage and vulnerability
detection. Code coverage has proven to be a challenge due to the state space
problem, where the search space to be explored becomes extremely large [6].
For example, vulnerabilities are hard to detect in network protocols because the
state-space of sophisticated protocol software is too large to be explored [7]. Vul-
nerability detection is another challenge that we have to take besides the code
coverage. Some vulnerabilities cannot be detected without going deep into the

http://orcid.org/0000-0002-5822-5435
http://orcid.org/0000-0003-1708-1399
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0002-6235-4272

2 K. M. Alshmrany et al.

software implementation. Many reasons motivate us to verify software for cov-
erage and to detect security vulnerabilities formally. Therefore, these problems
have attracted many researchers’ attention to developing automated tools.

Researchers have been advancing the state-of-the-art to detect software vul-
nerabilities, as observed in the recent edition of the International Competition
on Software Testing (Test-Comp 2021) [8]. Test-Comp is a competition that aims
to reflect the state-of-the-art in software testing to the community and establish
a set of benchmarks for software testing. This year’s competition, Test-Comp
2021 [8], has two categories Error Coverage (or Cover-Error) and Branch Cov-
erage (or Cover-Branches). Error Coverage category tests the tool’s ability to
discover bugs where every C program in the benchmarks contains a bug. Branch
Coverage category is to cover as many program branches as possible. Test-Comp
2021 works as follows: each tool task is a pair of an input program (a program
under test) and a test specification. The tool then should generate a test suite
according to the test specification. A test suite is a sequence of test-cases, given
as a directory of files according to the format for exchangeable test-suites3. The
specification for testing a program is given to the test generator as an input file
(either coverage-error-call.prp or coverage branches.prp for Test-Comp 2021) [8].

Techniques such as fuzzing [9], symbolic execution [10], static code analy-
sis [11], and taint tracking [12] are the most common techniques, which were
employed in Test-Comp 2021 to cover branches and detect security vulnera-
bilities [8]. Fuzzing is generally unable to create various inputs that exercise
all paths in the software execution. Symbolic execution might also not achieve
high path coverage because of the dependence on Satisfiability Modulo Theo-
ries (SMT) solvers and the path-explosion problem. Consequently, fuzzing and
symbolic execution by themselves often cannot reach deep software states. In
particular, the deep states’ vulnerabilities cannot be identified and detected by
these techniques in isolation [13]. Therefore, a hybrid technique involving fuzzing
and symbolic execution might achieve better code coverage than fuzzing or sym-
bolic execution alone. VeriFuzz [14] and LibKluzzer [15] are the most prominent
tools that combine these techniques. VeriFuzz combines the power of feedback-
driven evolutionary fuzz testing with static analysis, where LibKluzzer combines
the strengths of coverage-guided fuzzing and dynamic symbolic execution.

This paper proposes a novel method named FuSeBMC that combines Fuzzing
with Symbolic Execution via Bounded Model Checking for detecting security
vulnerabilities in C programs. In particular, we use two approaches for verifying
C programs. The first one exploits coverage-guided fuzzing to produce random
inputs to locate security vulnerabilities in C programs. The second one is based
on BMC techniques [16,17]. BMC unfolds a software system up to depth k by
evaluating (conditional) branch sides and merging states after that branch. It
builds one logical formula expressed in a fragment of first-order theories and
checks the resulting formula using SMT solvers. Thus, FuSeBMC relies on effi-
cient fuzzing and BMC techniques; it can handle two main features in software
testing: bug detection and code coverage, as defined by Beyer et al. [18]. As a re-
sult, our proposed method FuSeBMC combines fuzzing and symbolic execution

3 https://gitlab.com/sosy-lab/software/test-format/

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/

Verifying Security Vulnerabilities using Fuzzing and BMC 3

via BMC techniques. We also manage each engine’s execution time to improve
FuSeBMC ’s efficiency. Therefore, we raise the chance of bug detection due to its
ability to cover different blocks of the C program, which other tools could not
reach, e.g., KLEE [19], CPAchecker [20], VeriFuzz [14], and LibKluzzer [15].
Contributions. This paper extends our prior work [21] by making the following
original contributions.

– We describe the details of FuSeBMC that guides fuzzing and BMC to pro-
duce test-cases that can detect security vulnerabilities, achieve high code
coverage, and massively reduce the consumption of both CPU and memory.
Furthermore, we employ selective fuzzer as a third engine, where it learns
from the test-cases of fuzzing/BMC to produce new test-cases for the un-
covered goals to raise the chance of detecting bugs and code coverage.

– FuSeBMC successfully participated in Test-Comp 2021 and achieved first
place in the Cover-Error category and second place in the Overall category.
Furthermore, in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP,
FuSeBMC obtained first place in all these subcategories. Also, FuSeBMC
shows the ability to achieve high code coverage competitively if compared
with other state-of-the-art software testing tools.

2 Preliminaries

2.1 Fuzzing

Fuzzing is a software testing technique to exploit vulnerabilities in software sys-
tems [22]. Fuzzing prepares random or semi-random inputs to the target C pro-
gram. Critical security flaws most often occur because program inputs are not
adequately checked [23]. Since these inputs are random, their unexpected and
improper appearance in a target C program is highly probable. If the target C
program does not reject these improper inputs, it will hang or crash during fuzz
testing. Fuzzing is a quick and cost-effective method for locating security vul-
nerabilities in C programs. Software systems that cannot endure fuzzing could
potentially lead to security holes. For example, a bug was found in Apple wireless
driver by utilizing file system fuzzing tools. The driver could not handle some
beacon frames, which led to out-of-bounds memory access.

2.2 Symbolic Execution

Introduced in the 1970s, symbolic execution [24] is a software analysis technique
that allowed developers to test specific properties in their software. The main
idea is to execute a program symbolically using a symbolic execution engine that
keeps track of every path the program may take for every input [24]. Moreover,
each input is symbolic input values instead of concrete input values. This method
treats the paths as symbolic constraints and solves the constraints to output a
concrete input as a test-case. Symbolic execution is widely used to find security
vulnerabilities by analyzing program behavior and generating test-cases [25].

4 K. M. Alshmrany et al.

BMC is an instance of symbolic execution, where it merges all execution paths
into one single logical formula instead of exploring them individually. In 2013,
DARPA announced a two-year competition titled Cyber Grand Challenge [26].
In this competition, participants are to create tools that automatically detect
vulnerabilities and exploitation. This competition motivated researchers to ad-
vance state-of-the-art of software testing by utilizing symbolic execution.

2.3 Types of Vulnerabilities

The software, in general, is often prone to vulnerabilities caused by developer
mistakes, which include: buffer overflow, where a running program attempts
to write data outside the memory buffer, which is not intended to store this
data [27]; memory leak, which occurs when programmers create a memory in a
heap and forget to delete it [28]; Integer overflows, when the value of an integer
is greater than the integer’s maximum size in memory or less than the minimum
value of an integer. It usually occurs when converting a signed integer to an
unsigned integer and vice-versa [29]. Additionally, string manipulation, when the
string may contain malicious code and is accepted as an input; this is reasonably
common in the C programming language [30]. Denial-of-service attack (DoS) is
a security event that occurs when an attacker prevents legitimate users from
accessing specific computer systems, devices, services, or other IT resources [31].
For example, a vulnerability in the Cisco Discovery Protocol (CDP) module
of Cisco IOS XE Software Releases 16.6.1 and 16.6.2 could have allowed an
unauthenticated, adjacent attacker to cause a memory leak, which could have
lead to a DoS condition [32].

3 FuSeBMC: A White-Box Fuzzer for Finding Security
Vulnerabilities in C programs

We propose a novel verification method named FuSeBMC (cf. Fig. 1) for detect-
ing security vulnerabilities in C programs using fuzzing and BMC techniques.
FuSeBMC builds on top of the Clang compiler [33] to instrument the C program,
uses Map2check [34] as a fuzzing engine, and ESBMC (Efficient SMT-based
Bounded Model Checker) [35,36] as BMC and symbolic execution engines, thus
combining dynamic and static verification techniques.

The method proceeds as follows. First, FuSeBMC takes the C programs and
the specifications as input. Then, FuSeBMC invokes the fuzzing and BMC en-
gines sequentially for the Cover-Error category to find a path that violates a
given property. It uses an iterative BMC approach that incrementally unwinds
the program until it finds a property violation or exhausts time or memory lim-
its. As a result, FuSeBMC uses incremental BMC to explore the program state
space, searching for a property violation since all programs in Test-Comp 2021
are known to have errors. In Cover-Branches category, FuSeBMC explores and
analyzes the target C program using the clang compiler to inject labels incre-
mentally. FuSeBMC will compute all C code branches and inject the labels for
each branch by adding the label GOALN , where N is the goal number. Then,

Verifying Security Vulnerabilities using Fuzzing and BMC 5

C Code

Test
Specification

FuSeBMC

Analyze C code

Inject labels

Create Graphml

Test Suite

Fuzzing

BMC
Selective
Fuzzer Test suiteLearn

Produce counterexamples for
cover-error and cover-branches

Test specification

Test generation

Test execution

Test-Suite

Bug
Report

Coverage
Statistics

Test
Validator

Fig. 1: FuSeBMC : White-Box Fuzzing Framework for C Programs.

both engines will check whether these injected labels are reachable to produce
test-cases for branch coverage. After that, FuSeBMC analyzes the counterex-
amples and saves them as a graphml file. It checks whether the fuzzing and
BMC engines could produce counterexamples for both categories Cover-Error
and Cover-Branches. If that is not the case, FuSeBMC employs a second fuzzing
engine named selective fuzzer (cf. Section 3.6), which produces test-cases for the
rest of the labels. The selective fuzzer produces test-cases by learning from the
two engines’ output: it analyzes the range of the inputs that should be passed
to examine the target C program and then produces different test-cases.

FuSeBMC also manages the run-time of the fuzzing, BMC, and selective
fuzzer engines to 150s, 700s, and 50s, respectively. FuSeBMC further manages
the time allocated for each engine. If the fuzzing engine is finished before the
time allocated to it, the remaining time will be carried over and added to the
allocated time of the BMC engine. Similarly, we add the remaining time from the
BMC engine to the selective fuzzer allocated time. Lastly, FuSeBMC prepares
valid test-cases with metadata to test a target C program using TestCov [37] as
a test validator. The metadata file is an XML file that describes the test suite
and is consistently named metadata.xml.

Fig 2 illustrates an example metadata file with all available fields [37]. Some
essential fields include the program function that is tested by the test suite
〈entryfunction〉, the coverage criterion for the test suite 〈specification〉, the
programming language of the program under test 〈sourcecodelang〉, the system
architecture the program tests were created for 〈architecture〉, the creation time
〈creationtime〉, the SHA-256 hash of the program under test 〈programhash〉,
the producer of counterexample 〈producer〉 and the name of the target program
〈programfile〉. A test-case file contains a sequence of tags 〈input〉 that describes
the input values sequence. Fig 3 illustrates an example of the test-case file.

Algorithm 1 describes our algorithm we implemented in FuSeBMC. It consists
of extracting all goals of a C program (line 1). For each goal, the instrumented
C program, containing the goals (line 2), is executed on our verification engines
(fuzzing and BMC) to check the reachability property for that goal (line 7).

6 K. M. Alshmrany et al.

If our engines find that the property is violated, meaning that there is a valid
execution path that reaches the goal, then the goals are marked as found, and
the test-case is saved for later (lines 8-10). After that, if our verification engines
could not reach some goals, then we employ a selective fuzzer, i.e., we generate
random inputs and check whether these inputs can reach those goals (lines 13-
18). As a result, the generation of values still depends on the program’s internal
structure. In the end, we return all test-cases for all the goals we have found in
the specified XML format (line 21).

Algorithm 1 Proposed FuSeBMC algorithm.

Require: program P
1: goals← clang extract goals(P)
2: instrumentedP ← clang instrument goals(P, goals)
3: reached goals← ∅
4: tests← ∅
5: for all G ∈ goals do
6: φ← REACH(G)
7: result, test case← Fuzzing/BMC(instrumentedP, φ)
8: if result = false then
9: reached goals← reached goals ∪G

10: tests← tests ∪ test case
11: end if
12: end for
13: for all G ∈ (goals− reached goals) do
14: φ← REACH(G)
15: result← selectivefuzzer(instrumentedP, φ)
16: if result = false then
17: reached goals← reached goals ∪G
18: tests← tests ∪ test case
19: end if
20: end for
21: return tests

3.1 Analyze C Code

FuSeBMC explores and analyzes the target C programs as the first step using
Clang [38]. In this phase, FuSeBMC analyzes every single line in the C code
and considers the conditional statements such as the if -conditions, for, while,
and do while loops in the code. FuSeBMC takes all these branches as path
conditions, containing different values due to the conditions set used to produce
the counterexamples, thus helping increase the code coverage. It supports blocks,
branches, and conditions. All the values of the variables within each path are
taken into account. Parentheses and the else-branch are added to compile the
target code without errors.

Verifying Security Vulnerabilities using Fuzzing and BMC 7

1 <?xml version =’1.0’>
2 <!DOCTYPE test -metadata PUBLIC [...]>
3 <test -metadata >
4 <entryfunction >main </ entryfunction >
5 <specification >COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE)))
6 </specification >
7 <sourcecodelang >C</ sourcecodelang >
8 <architecture >32bit </ architecture >
9 <creationtime >2021 -02 -28 20:44:56.117416 </ creationtime >

10 <programhash >e8f2cf545726d8f791bfc137e9eca7e9de4cb696 </ programhash >
11 <producer >FuSeBMC </producer >
12 <programfile >sv -benchmarks/c/array -tiling/skippedu.c</ programfile >
13 </test -metadata >

Fig. 2: An example of a metadata.

1 <?xml version ="1.0"? >
2 <!DOCTYPE testcase PUBLIC [...]>
3 <testcase >
4 <input >2</input >
5 <input >1</input >
6 <input >128 </input >
7 <input >0</input >
8 <input >0</input >
9 <input >1</input >

10 <input >64</input >
11 <input >0</input >
12 <input >0</input >
13 </testcase >

Fig. 3: An example of test-case file.

3.2 Inject Labels

FuSeBMC injects the labels GOAL in every branch in the C code as the second
step. In particular, FuSeBMC adds else to the C code that has an if -condition
with no else at the end of the condition. Additionally, FuSeBMC will consider
this as another branch that should produce a counterexample for it to increase
the chance of detecting bugs and covering more statements in the program. For
example, the code in Fig. 4 consists of two branches: the if -branch is entered
if condition x < 0 holds; otherwise, the else-branch is entered implicitly, which
can exercise the remaining execution paths. Also, Fig. 4 shows how FuSeBMC
injects the labels and considers it as a new branch.

3.3 Produce Counterexamples

FuSeBMC generates counterexamples for all goals (e.g., GOAL1, GOAL2, ...,
GOALn) produced in the previous phase by our verification engines. FuSeBMC
then checks whether it covers all the goals within the C program. If so, FuSeBMC
continues to the next phase; otherwise, FuSeBMC passes the goals that are not
covered to the selective fuzzer to produce the test-cases for it using randomly
generated inputs learned from the test-cases produced from both engines. Fig. 5
illustrates how the method works.

8 K. M. Alshmrany et al.

1 #include <stdio.h>
2 int example () {
3 int x;
4 if (x < 0){
5 // ...
6 }
7 }

(a) Original C code.

1 #include <stdio.h>
2 int example () {
3 int x;
4 if (x < 0){
5 GOAL_1 :;
6 // ...
7 }
8 else{
9 GOAL_2 :;

10 }
11 return 0;
12 }

(b) Code instrumented.

Fig. 4: Original C code vs code instrumented.

Goal1 Goal2 Goal3

Goal4 Goal5 Goal6

Selective Fuzzer

Have all
goals been
covered?

Create Graphml

Goal4 Goal6

Fuzzing

BMC

No

Yes

Goal1 Goal2 Goal3

Fig. 5: Produce Counterexamples.

3.4 Create Graphml

FuSeBMC will generate a graphml for each goal injected and then name it. The
name of the graphml takes the number of the goal extended by the graphml
extension, e.g., (GOAL1.graphml). The graphml file contains data about the
counterexample, such as data types, values, and line numbers for the variable,
which will be used to obtain the values of the target variable. Fig. 6 illustrates
a graphml file example extracted from FuSeBMC.

3.5 Produce Test-Cases

In this phase, FuSeBMC will analyze all the graphml files produced in the pre-
vious phase. Practically, FuSeBMC will focus on the edges that refer to the
variable with a type non-deterministic. These variables will store their value in
a file called, for example, (testcase1.xml). Fig. 7 illustrates the edges and values
used to create the test-cases.

Verifying Security Vulnerabilities using Fuzzing and BMC 9

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <graphml xmlns="http :// graphml.graphdrawing.org/xmlns"
3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">
4 <key id=" frontier" attr.name=" isFrontierNode"
5 attr.type=" boolean" for="node">
6 <default >false </default >
7 </key >
8 .
9 .

10 .
11 <graph edgedefault =" directed">
12 <data key=" producer">FuSeBMC </data >
13 <data key=" sourcecodelang">C</data >
14 <data key=" architecture ">32bit </data >
15 <data key=" programfile">
16 /my_instrument_outpt/instrumented.c</data >
17 <data key=" programhash">
18 480 a6e9ea7d5cd504ef15934ff3cb633121b790f </data >
19 <data key=" specification">CHECK(init(main()),
20 LTL(G ! call(__reach_error ())))</data >
21 <data key=" creationtime " >2021 -02-28 T14 :07:11 </data >
22 <data key="witness -type">violation_witness </data >
23 <node id="N1">
24 <data key="entry">true </data >
25 </node >
26 <node id="N2">
27 <edge id="E2" source ="N2" target ="N3">
28 <data key=" enterFunction">main </data >
29 <data key=" createThread ">0</data >
30 </edge >
31 </node >
32 .
33 .
34 .
35 <node id="N5"/>
36 <edge id="E4" source ="N4" target ="N5">
37 <data key=" startline ">4</data >
38 <data key=" assumption">b = 0;</data >
39 <data key=" threadId ">0</data >
40 </edge >
41 </node >
42 </graph >
43 </graphml >

Fig. 6: An example of Graphml file

1 <edge id="E2" source ="N2" target ="N3">
2 <data key=" startline ">3</data >
3 <data key=" assumption"> a = -2147483647; </data >
4 <data key=" threadId ">0</data >
5 </edge >
6
7 <edge id="E4" source ="N4" target ="N5">
8 <data key=" startline ">4</data >
9 <data key=" assumption">b = 0;</data >

10 <data key=" threadId ">0</data >
11 </edge >

Fig. 7: An example of target edges

10 K. M. Alshmrany et al.

3.6 Selective Fuzzer

In this phase, our third engine Selective Fuzzer will learn from the test-cases
produced by either Fuzzing or BMC engines to produce test-cases for the goals
that have not been covered by the two engines Fuzzing/BMC. The test-cases
information will help our selective fuzzer by providing information about the
number of inputs required to trigger a property violation, i.e., the number of
assignments required to reach an error. For example, in Fig. 8, we assumed that
the Fuzzing/BMC produced a test-case that contains values 18 (1000 times)
generated from a random seed. The selective fuzzer will produce random numbers
(1000 times) based on the information about the number of inputs required to
trigger a property violation, i.e., the number of assignments required to reach
an error. In several cases, the BMC engine can exhaust the time limit before
providing such information, e.g., when there are large arrays that need to be
initialized at the beginning of the program.

18
18
18
18
18
.
.
.
18

We assumed that the Fuzzer/BMC passes
the values 18 (1000 times)

1
30
-45
78
91
.
.
.
128

The selective fuzzer will produce random number N (1000
times) based on the information we got from Fuzzer/BMC

18
18
18
18
18
.
.
.
18

Selective
Fuzzer

New Test-Case
One example of Test-Case

Test Suite

Fig. 8: The Selective Fuzzer

3.7 Test Validator

The test validator takes as input the test-cases produced by FuSeBMC and then
validates it by executing the program on all test-cases. The test validator checks
whether the bug is exposed if the test was bug-detection, and it reports the code
coverage if the test was a measure of the coverage. In our experiments, we use
the tool TESTCOV [37] as a test validator. The tool provides coverage statistics
per test. It supports block, branch, and condition coverage, as well as covering
calls to an error-function. TESTCOV uses the XML-based exchange format for
test-cases specifications defined by Test-Comp [16]. TESTCOV was successfully
used in recent editions of Test-Comp 2019, 2020 and 2021 to execute almost 9
million tests on 1720 different programs [37].

4 Evaluation

4.1 Description of Benchmarks and Setup

FuSeBMC defines three main criteria as follows. First, the ability to detect bugs
that can be evaluated by validating software against their specifications. Second,

Verifying Security Vulnerabilities using Fuzzing and BMC 11

the ability to obtain high-coverage of the program compared to state-of-the-art
software testing tools. Third, reducing the consumption of CPU and memory.

We conducted experiments with FuSeBMC on the benchmarks of Test-Comp
2021 [39] to check the tool’s ability in the previously mentioned criteria. Our
evaluation benchmarks are taken from the largest and most diverse open-source
repository of software verification tasks. The same benchmark collection is used
by SV-COMP [40]. These benchmarks yield 3173 test tasks, namely 607 test
tasks for the category Error Coverage and 2566 test tasks for the category Code
Coverage. Both categories contain C programs with loops, arrays, bit-vectors,
floating-point numbers, dynamic memory allocation, and recursive functions.

The experiments were conducted on the server of Test-Comp 2021 [39]. Each
run was limited to 8 processing units, 15 GB of memory, and 15 min of CPU
time. The test suite validation was limited to 2 processing units, 7 GB of memory,
and 5 min of CPU time. Also, the machine had the following specification of the
test node was: one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4 GHz, 33 GB of RAM, and a GNU/Linux operating system
(x86-64-Linux, Ubuntu 20.04 with Linux kernel 5.4).

FuSeBMC source code is written in C++; it is available for downloading
at GitHub,4 which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is
publicly available under the terms of the MIT license. Instructions for building
FuSeBMC from the source code are given in the file README.md.

4.2 Objectives

This evaluation’s main goal is to check the performance and suitability of FuSeBMC
to detect security vulnerabilities in open-source C programs. Our experimental
evaluation aims to answer three experimental goals:

EG1 (Security Vulnerability Detection) Could FuSeBMC detect se-
curity vulnerabilities in a target C software?

EG2 (Coverage Capacity) Could FuSeBMC achieve a higher coverage
when compared with other state-of-the-art software testing tools?

EG3 (Low Energy Consumption) Could FuSeBMC reduce the con-
sumption of CPU and memory compared with the state-of-the-art
tools?

4.3 Results

First, we evaluated FuSeBMC on the Error Coverage category. Table 1 shows
the experimental results compared with other tools in Test-Comp 2021 [39],
where FuSeBMC achieved the 1st place in this category by solving 500 out of
607 tasks, an 82% success rate.

In detail, FuSeBMC achieved 1st place in the subcategories ReachSafety-
BitVectors, ReachSafety-Floats, ReachSafety-Recursive, ReachSafety-XCSP and

4 https://github.com/kaled-alshmrany/FuSeBMC

https://github.com/kaled-alshmrany/FuSeBMC

12 K. M. Alshmrany et al.

ReachSafety-Sequentialized. FuSeBMC solved 10 out of 10 tasks in ReachSafety-
BitVectors, 32 out of 33 tasks in ReachSafety-Floats, 19 out of 20 tasks in
ReachSafety-Recursive, 53 out of 59 tasks in ReachSafety-XCSP and 101 out
of 107 tasks in ReachSafety-Sequentialized. FuSeBMC outperformed the top
tools in Test-Comp 2021, such as KLEE [19], CPAchecker [20], Symbiotic [41],
LibKluzzer [15], and VeriFuzz [14] in these subcategories. However, FuSeBMC
could not perform that well in the ReachSafety-ECA subcategory if compared
with top tools in the Test-Comp 2021 since these benchmarks contain too many
nested branches. The FuSeBMC ’s verification engines and the selective fuzzer
could not produce test-cases to reach the error due to the existence of too many
path conditions, which makes the logical formula hard to solve or difficult to
create random inputs to reach the error.

Overall, the results of FuSeBMC showed its efficiency in detecting bugs
in different types of C programs, which successfully answers EG1.

Table 1: Cover-Error Results5. We identify the best for each tool in bold.

Cover-Error

T
a
s
k
-N

u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
r
iT

e
s
t

H
y
b
r
id

T
ig

e
r

K
L
E
E

L
e
g
io

n

L
ib

K
lu

z
z
e
r

P
R
T
e
s
t

S
y
m

b
io

t
ic

T
r
a
c
e
r
-X

V
e
r
iF

u
z
z

ReachSafety-Arrays 100 93 0 59 69 88 67 96 11 73 75 95

ReachSafety-BitVectors 10 10 0 8 6 9 0 9 5 8 7 9

ReachSafety-ControlFlow 32 8 0 8 8 10 0 11 0 7 9 9

ReachSafety-ECA 18 8 0 2 1 14 0 11 0 15 2 16

ReachSafety-Floats 33 32 0 16 22 6 0 30 3 0 0 30

ReachSafety-Heap 57 45 0 37 38 46 0 47 9 47 44 47

ReachSafety-Loops 158 131 0 35 53 96 4 138 102 82 78 136

ReachSafety-Recursive 20 19 0 0 5 16 0 17 1 17 14 13

ReachSafety-Sequentialized 107 101 0 61 93 86 0 83 0 79 57 99

ReachSafety-XCSP 59 53 0 46 52 37 0 3 0 41 31 25

SoftwareSystems-BusyBox-MemSafety 11 0 0 0 0 0 0 0 0 0 0 0

DeviceDriversLinux64-ReachSafety 2 0 0 0 0 0 0 0 0 0 0 0

Overall 699 405 0 225 266 339 35 359 79 314 246 385

Also, we applied FuSeBMC to the Branch Coverage category. Table 2 shows
the experiments’ results compared with other tools in the Test-Comp 2021 [39],
where FuSeBMC achieved 4th place in this category by successfully achieving
1161 out of 2566 scores, which was behind the 3rd place by 8 scores only.

5 https://test-comp.sosy-lab.org/2021/results/results-verified/

https://test-comp.sosy-lab.org/2021/results/results-verified/

Verifying Security Vulnerabilities using Fuzzing and BMC 13

Practically, in the subcategory ReachSafety-Floats, FuSeBMC obtained the
first place by achieving 103 out of 226 scores. Thus, FuSeBMC outperformed
the top tools in Test-Comp 2021, such as KLEE [19], CPAchecker [20], Sym-
biotic [41], LibKluzzer [15], and VeriFuzz [14]. Further, FuSeBMC obtained
the first place in the subcategory ReachSafety-XCSP by achieving 97 out of
119 scores. However, FuSeBMC could not perform well in the subcategory
ReachSafety-ECA compared with top tools in the Test-Comp 2021 because of
the same problem that we explained in the previous subsection.

These results answer our EG2: FuSeBMC showed its efficiency in the
Branch Coverage category, especially in these subcategories ReachSafety-
Floats and ReachSafety-XCSP, where it ranked in the first place.

Table 2: Cover-Branches Results6. We identify the best for each tool in bold.

Cover-Branches

T
a
s
k
-N

u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
r
iT

e
s
t

H
y
b
r
id

T
ig

e
r

K
L
E
E

L
e
g
io

n

L
ib

K
lu

z
z
e
r

P
R
T
e
s
t

S
y
m

b
io

t
ic

T
r
a
c
e
r
-X

V
e
r
iF

u
z
z

ReachSafety-Arrays 400 284 139 229 225 96 195 296 119 226 223 295

ReachSafety-BitVectors 62 37 23 39 13 28 29 40 27 37 37 38

ReachSafety-ControlFlow 67 15 4 16 3 8 8 16 5 18 15 18

ReachSafety-ECA 29 5 0 6 2 7 3 10 2 10 7 12

ReachSafety-Floats 226 103 51 98 84 16 64 90 41 50 48 99

ReachSafety-Heap 143 88 19 79 74 81 69 90 40 84 86 86

ReachSafety-Loops 581 412 152 402 338 274 271 419 252 383 385 424

ReachSafety-Recursive 53 36 19 31 31 18 20 36 9 38 34 35

ReachSafety-Sequentialized 82 62 0 61 39 26 1 55 8 36 41 71

ReachSafety-XCSP 119 97 0 80 80 81 2 80 79 93 69 88

ReachSafety-Combinations 210 15 0 31 8 82 18 139 2 135 99 180

SoftwareSystems-BusyBox-MemSafety 72 1 0 5 4 6 0 6 4 7 4 8

DeviceDriversLinux64-ReachSafety 290 35 13 60 6 25 56 58 16 44 56 57

SoftwareSystemsSQLite-MemSafety 1 0 0 0 0 0 0 0 0 0 0 0

Termination-MainHeap 231 202 138 193 189 119 166 199 51 178 185 204

Overall 2566 1161 411 1128 860 784 651 1292 519 1169 1087 1389

FuSeBMC overall results achieved 2nd place in Test-Comp 2021, achieving
1776 out of 3173 scores. Table 3 and Fig. 9 shows the overall results comparing
with other tools in the competition. Overall, FuSeBMC performed well compared
with top tools KLEE [19], CPAchecker [20], Symbiotic [41], LibKluzzer [15], and
VeriFuzz [14] in the subcategories ReachSafety-BitVectors, ReachSafety-Floats,
ReachSafety-Recursive, ReachSafety-Sequentialized and ReachSafety-XCSP.

6 https://test-comp.sosy-lab.org/2021/results/results-verified/

https://test-comp.sosy-lab.org/2021/results/results-verified/

14 K. M. Alshmrany et al.

Fig. 9: Quantile functions for category Overall. [8]

Test-Comp 2021 also considers the energy efficiency in rankings since a large
part of the cost of test generation is caused by energy consumption. FuSeBMC is
classified as a Green-testing tool - Low Energy Consumption tool (see Fig. 10).
FuSeBMC consumed less energy than other tools in the competition. This rank-
ing category uses the energy consumption per score point as a rank measure:
CPU Energy Quality, with the unit kilo-joule per score point (kJ/sp). It uses
CPU Energy Meter [42] for measuring the energy.

Fig. 10: The Consumption of CPU and Memory [8].

These experimental results showed that FuSeBMC could reduce the con-
sumption of CPU and memory efficiently and effectively in C programs,
which answers EG3.

7 https://test-comp.sosy-lab.org/2021/results/results-verified/

https://test-comp.sosy-lab.org/2021/results/results-verified/

Verifying Security Vulnerabilities using Fuzzing and BMC 15

Table 3: Test-Comp 2021 Overall Results7.

Cover-Error and Branches

T
a
s
k
-N

u
m

F
u
S
e
B
M

C

C
M

A
-E

S
F
u
z
z

C
o
V
e
r
iT

e
s
t

H
y
b
r
id

T
ig

e
r

K
L
E
E

L
e
g
io

n

L
ib

K
lu

z
z
e
r

P
R
T
e
s
t

S
y
m

b
io

t
ic

T
r
a
c
e
r
-X

V
e
r
iF

u
z
z

OVERALL 3230 1776 254 1286 1228 1370 495 1738 526 1543 1315 1865

5 Related Work

For more than 20 years, software vulnerabilities have been mainly identified by
fuzzing [43]. American fuzzy lop (AFL) [44,45] is a tool that aims to find soft-
ware vulnerabilities. AFL increases the coverage of test-cases by utilizing genetic
algorithms (GA) with guided fuzzing. Another fuzzing tool is LibFuzzer [46].
LibFuzzer generates test-cases by using code coverage information provided by
LLVM’s Sanitizer Coverage instrumentation. It is best used for programs with
small inputs that have a run-time of less than a fraction of a second for each
input as it is guaranteed not to crash on invalid inputs. AutoFuzz [47] is a tool
that verifies network protocols using fuzzing. First, it determines the specifica-
tion for the protocol then utilizes fuzzing to find vulnerabilities. Additionally,
Peach [48] is an advanced and robust fuzzing framework that provides an XML
file to create a data model and state model definition.

Symbolic execution has also been used to identify security vulnerabilities.
One of the most popular symbolic execution engines is KLEE [19]. It is built on
top of the LLVM compiler infrastructure and employs dynamic symbolic execu-
tion to explore the search space path-by-path. KLEE has proven to be a reliable
symbolic execution engine for its utilization in many specialized tools such as
TracerX [49] and Map2Check [34] for software verification, also SymbexNet [50]
and SymNet [51] for verification of network protocols implementation.

The combination of symbolic execution and fuzzing has been proposed before.
It was starting with the tool that earned first place in Test-Comp 2020 [52], Ver-
iFuzz [14]. VeriFuzz is a state-of-the-art tool we have compared to FuSeBMC. It
is a program-aware fuzz testing that combines the power of feedback-driven evo-
lutionary fuzz testing with static analysis. It is built based on grey-box fuzzing
to exploit lightweight instrumentation for observing the behaviors that occur
during test runs. There is also LibKluzzer [15], which is a novel implementation
that combines the strengths of coverage-guided fuzzing and white-box fuzzing.
LibKluzzer is a combination of LibFuzzer and an extension of KLEE called
KLUZZER [53]. LibKluzzer is one of the top state-of-the-art tools in the Test-
Comp 2020 that we compared to our FuSeBMC approach. Driller [54] is a hybrid
vulnerability excavation tool, which leverages fuzzing and selective concolic ex-
ecution in a complementary manner to find bugs deeply. The authors avoid the
path explosion inherent in concolic analysis and the incompleteness of fuzzing
by combining the two techniques’ strengths and mitigating the weaknesses.

16 K. M. Alshmrany et al.

Another example is hybrid fuzzer [55], which provides an efficient way to
generate provably random test-cases that will guarantee the unique paths’ exe-
cution. Also, Badger [56], a hybrid testing approach for complexity analysis. It
uses Symbolic PathFinder [57] to generate new inputs and provides the Kelinci
fuzzer with worst-case analysis. Munch [58] is a hybrid tool introduced to in-
crease function coverage. It employs fuzzing with seed-inputs generated by sym-
bolic execution and targets symbolic execution when fuzzing saturates. SAGE
(Scalable Automated Guided Execution) [59] is a hybrid fuzzer developed at
Microsoft Research. It extends dynamic symbolic execution with a generational
search; it negates and solves the path predicates to increase the code coverage.
SAGE is used extensively at Microsoft, where it has been successful at finding
many security-related bugs. SAFL [60] is an efficient fuzzer for C/C++ pro-
grams. It generates initial seeds that can get an appropriate fuzzing direction
by employing symbolic execution in a lightweight approach. He et al. [61] de-
scribe a new approach for learning a fuzzer from symbolic execution and they
instantiated it to the domain of smart contracts. First, it learns a fuzzing policy
using neural networks. Then it generates inputs for fuzzing unseen smart con-
tracts by this learning fuzzing policy. In summary, many tools combined fuzzers
with BMC and symbolic execution to perform software verification. However,
our approach’s novelty lies within the combination of the selective fuzzer and
time management between engines. They distinguished FuSeBMC from other
tools and made it outperform them in Test-Comp 2021.

6 Conclusions and Future work

We proposed a novel software testing approach named FuSeBMC that combines
Fuzzing and BMC. FuSeBMC explores and analyzes the target C programs by
incrementally injecting labels to guide the fuzzing and BMC engines to produce
test-cases. We inject labels in every program branch to check for their reach-
ability, thus producing test-cases if these labels are reachable. We also exploit
selective fuzzer to produce test-cases for the labels that fuzzing and BMC could
not produce test-cases. Consequently, FuSeBMC achieved two significant awards
from Test-Comp 2021. First place in the Cover-Error category and second place
in the Overall category. FuSeBMC outperformed the top state-of-the-art tools
because of two major reasons. First, employing a selective fuzzer as a third en-
gine learns from the test-cases of fuzzing/BMC to produce new test-cases for
the uncovered goals by previous test-cases. Overall, it substantially increased
the percentage of successful tasks. Second, we manage the time allocated for
each engine. If the fuzzing engine is finished before the time allocated to it,
the remaining time will be carried over and added to the allocated time of the
BMC engine. Similarly, we add the remaining time from the BMC engine to
the selective fuzzer allocated time. As a result, FuSeBMC raised the bar for the
competition, thus advancing state-of-the-art software testing. Future work will
investigate reinforcement learning techniques to guide our selective fuzzer to find
test-cases that path-based fuzzing and BMC could not find.

Verifying Security Vulnerabilities using Fuzzing and BMC 17

References

1. M. Rodriguez, M. Piattini, and C. Ebert, “Software verification and validation
technologies and tools,” IEEE Software, vol. 36, no. 2, pp. 13–24, 2019.

2. “Airbus issues software bug alert after fatal plane crash.” the Guardian https:
//tinyurl.com/xw67wtd9, May 2015. [Online; accessed March-2021].

3. B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery techniques: A
survey,” in 2012 fourth international conference on multimedia information net-
working and security, pp. 152–156, IEEE, 2012.

4. E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic,” in 25 Years of Model Checking
(O. Grumberg and H. Veith, eds.), pp. 196–215, 2008.

5. P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the ACM,
vol. 63, no. 2, pp. 70–76, 2020.

6. E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking and the
state explosion problem,” LASER Summer School, vol. 7682 LNCS, no. 2005, pp. 1–
30, 2012.

7. W. Shameng and e. a. Feng Chao, “Testing network protocol binary software with
selective symbolic execution,” in CIS, pp. 318–322, IEEE, 2016.

8. D. Beyer, “3rd Competition on Software Testing (Test-Comp 2021),” 2021.

9. Miller and e. a. Barton, “Fuzz revisited: A re-examination of the reliability of unix
utilities and services,” tech. rep., UW-Madison, 1995.

10. J. C. King, “Symbolic execution and program testing,” Communications of the
ACM, vol. 19, no. 7, pp. 385–394, 1976.

11. J. Faria, “Inspections, revisions and other techniques of software static analysis,”
Software Testing and Quality, Lecture, vol. 9, 2008.

12. Qin, S, and K, “Lift: A low-overhead practical information flow tracking system
for detecting security attacks,” in MICRO’06, pp. 135–148, IEEE, 2006.

13. S. Ognawala, F. Kilger, and A. Pretschner, “Compositional fuzzing aided by tar-
geted symbolic execution,” arXiv preprint arXiv:1903.02981, 2019.

14. A. B. Chowdhury, R. K. Medicherla, and R. Venkatesh, “Verifuzz: Program aware
fuzzing,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 244–249, Springer, 2019.

15. H. M. Le, “Llvm-based hybrid fuzzing with libkluzzer (competition contribution).,”
in FASE, pp. 535–539, 2020.

16. A. Biere, “Bounded model checking,” in Handbook of Satisfiability (A. Biere,
M. Heule, H. van Maaren, and T. Walsh, eds.), vol. 185 of Frontiers in Artifi-
cial Intelligence and Applications, pp. 457–481, IOS Press, 2009.

17. L. C. Cordeiro, B. Fischer, and J. Marques-Silva, “Smt-based bounded model
checking for embedded ANSI-C software,” IEEE Trans. Software Eng., vol. 38,
no. 4, pp. 957–974, 2012.

18. D. Beyer, “Second competition on software testing: Test-comp 2020,” in FASE
(H. Wehrheim and J. Cabot, eds.), vol. 12076 of LNCS, pp. 505–519, Springer,
2020.

19. Cadar, Cristian, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in OSDI, vol. 8,
pp. 209–224, 2008.

20. D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable software
verification,” in International Conference on Computer Aided Verification, pp. 184–
190, Springer, 2011.

https://tinyurl.com/xw67wtd9
https://tinyurl.com/xw67wtd9

18 K. M. Alshmrany et al.

21. K. M. Alshmrany, R. S. Menezes, M. R. Gadelha, and L. C. Cordeiro, “Fusebmc: A
white-box fuzzer for finding security vulnerabilities in c programs,” In 24th Inter-
national Conference on Fundamental Approaches to Software Engineering (FASE),
vol. 12649, pp. 363–367, 2020.

22. Munea, T. Legesse, Lim, Hyunwoo, Shon, and Taeshik, “Network protocol fuzz
testing for information systems and applications: a survey and taxonomy,” Multi-
media Tools and Applications, vol. 75, no. 22, pp. 14745–14757, 2016.

23. Wang, Jiajie, T. Guo, P. Zhang, and Q. Xiao, “A model-based behavioral fuzzing
approach for network service,” in 2013 Third International Conference on IMCCC,
pp. 1129–1134, IEEE, 2013.

24. R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Comput. Surv., vol. 51, May 2018.

25. Chipounov, Vitaly, V. Georgescu, C. Zamfir, and G. Candea, “Selective symbolic
execution,” in Proceedings of the 5th Workshop on (HotDep), 2009.

26. Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state of) the
art of war: Offensive techniques in binary analysis,” in 2016 IEEE Symposium on
Security and Privacy (SP), pp. 138–157, 2016.

27. P. E. Black and I. Bojanova, “Defeating buffer overflow: A trivial but dangerous
bug,” IT professional, vol. 18, no. 6, pp. 58–61, 2016.

28. S. Zhang, J. Zhu, A. Liu, W. Wang, C. Guo, and J. Xu, “A novel memory leak clas-
sification for evaluating the applicability of static analysis tools,” in 2018 IEEE In-
ternational Conference on Progress in Informatics and Computing (PIC), pp. 351–
356, IEEE, 2018.

29. W. Jimenez, A. Mammar, and A. Cavalli, “Software vulnerabilities, prevention and
detection methods: A review1,” Security in model-driven architecture, vol. 215995,
p. 215995, 2009.

30. E. H. Boudjema, C. Faure, M. Sassolas, and L. Mokdad, “Detection of security
vulnerabilities in c language applications,” Security and Privacy, vol. 1, no. 1,
p. e8, 2018.

31. US-CERT, “Understanding Denial-of-Service Attacks — CISA,” 2009.
32. Cisco, “Cisco IOS XE Software Cisco Discovery Protocol Memory Leak Vulnera-

bility,” 2018.
33. “Clang documentation.” http://clang.llvm.org/docs/index.html, 2015. [Online; ac-

cessed August-2019].
34. H. Rocha, R. Barreto, and L. C. Cordeiro, “Hunting memory bugs in C programs

with map2check,” in Tools And Algorithms For The Construction And Analysis
Of Systems, vol. 9636 of LNCS, pp. 934–937, 2016.

35. M. R. Gadelha, F. Monteiro, L. Cordeiro, and D. Nicole, “Esbmc v6. 0: Verifying c
programs using k-induction and invariant inference,” in International Conference
on TACAS, pp. 209–213, Springer, 2019.

36. M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A.
Nicole, “Esbmc 5.0: an industrial-strength c model checker,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 888–891, 2018.

37. D. Beyer and T. Lemberger, “Testcov: Robust test-suite execution and coverage
measurement,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1074–1077, IEEE, 2019.

38. B. C. Lopes and R. Auler, Getting started with LLVM core libraries. Packt Pub-
lishing Ltd, 2014.

39. D. Beyer, “Status report on software testing: Test-comp 2021,” Proc. FASE. LNCS,
vol. 12649.

http://clang.llvm.org/docs/index.html

Verifying Security Vulnerabilities using Fuzzing and BMC 19

40. D. Beyer, “Software verification: 10th comparative evaluation (sv-comp 2021),”
Proc. TACAS (2). LNCS, vol. 12652.

41. Chalupa, Marek, Novák, J, Strejček, and Jan, “Symbiotic 8: Parallel and targeted
test generation (competition contribution),” in FASE, vol. 12649 of LNCS, 2021.

42. D. Beyer and P. Wendler, “Cpu energy meter: A tool for energy-aware algorithms
engineering,” in International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 126–133, Springer, 2020.

43. Barton, J. H., E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault injection
experiments using fiat,” IEEE Trans. Comput., vol. 39, no. 4, pp. 575–582, 1990.

44. M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox
fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344, 2017.

45. 2021.
46. K. Serebryany, “libfuzzer–a library for coverage-guided fuzz testing,” LLVM

project, 2015.
47. S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network protocol fuzzing

framework,” IJCSNS, vol. 10, no. 8, p. 239, 2010.
48. M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, vol. 34, 2011.
49. J. Jaffar, R. Maghareh, S. Godboley, and X.-L. Ha, “Tracerx: Dynamic symbolic

execution with interpolation (competition contribution).,” in FASE, pp. 530–534,
2020.

50. Song, JaeSeung, C. Cadar, and P. Pietzuch, “Symbexnet: testing network proto-
col implementations with symbolic execution and rule-based specifications,” IEEE
TSE, vol. 40, no. 7, pp. 695–709, 2014.

51. Sasnauskas, Raimondas, P. Kaiser, R. L. Jukić, and K. Wehrle, “Integration testing
of protocol implementations using symbolic distributed execution,” in ICNP, pp. 1–
6, IEEE, 2012.

52. D. Beyer, “Second competition on software testing: Test-comp 2020.,” in FASE,
pp. 505–519, 2020.

53. H. M. Le, “Llvm-based hybrid fuzzing with libkluzzer (competition contribution),”
in Fundamental Approaches to Software Engineering (H. Wehrheim and J. Cabot,
eds.), (Cham), pp. 535–539, Springer International Publishing, 2020.

54. N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective
symbolic execution.,” in NDSS, pp. 1–16, 2016.

55. B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic
execution,” School of Computer Science Carnegie Mellon University, 2012.

56. Y. Noller, R. Kersten, and C. S. Păsăreanu, “Badger: complexity analysis with
fuzzing and symbolic execution,” in Proceedings of the 27th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, pp. 322–332, 2018.

57. C. S. Păsăreanu and N. Rungta, “Symbolic pathfinder: symbolic execution of java
bytecode,” in Proceedings of the IEEE/ACM international conference on Auto-
mated software engineering, pp. 179–180, 2010.

58. S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner, “Improving func-
tion coverage with munch: a hybrid fuzzing and directed symbolic execution ap-
proach,” in Proceedings of the 33rd Annual ACM Symposium on Applied Comput-
ing, pp. 1475–1482, 2018.

59. P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for security
testing,” Queue, vol. 10, no. 1, pp. 20–27, 2012.

60. M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and J. Sun,
“Safl: increasing and accelerating testing coverage with symbolic execution and
guided fuzzing,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, pp. 61–64, 2018.

20 K. M. Alshmrany et al.

61. J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, “Learning to fuzz
from symbolic execution with application to smart contracts,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 531–548, 2019.

