
EasyChair Preprint
№ 12943

Lossless and Near-Lossless Compression for
Foundation Models

Moshik Hershcovitch, Leshem Choshen, Andrew Wood,
Ilias Ennmouri, Peter Chin, Swaminathan Sundararaman and
Danny Harnik

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 8, 2024

1

Lossless and Near-Lossless Compression for
Foundation Models

Moshik Hershcovitch1,2, Leshem Choshen1,3, Andrew Wood4,
Ilias Enmouri1, Peter Chin5, Swaminathan Sundararaman1, Danny Harnik1

1 IBM Research 2 Tel-Aviv University 3 MIT
4 Boston University 5 Dartmouth University

Abstract—With the growth of model sizes and scale of their
deployment, their sheer size burdens the infrastructure requiring
more network and more storage to accommodate these. While
there is a vast literature about reducing model sizes, we investi-
gate a more traditional type of compression – one that compresses
the model to a smaller form and is coupled with a decompression
algorithm that returns it to its original size – namely lossless
compression.

Somewhat surprisingly, we show that specific lossless com-
pression can gain significant network and storage reduction on
popular models, at times reducing over 50% of the model size.
We investigate the source of model compressibility and introduce
specialized compression variants tailored for models that further
increase the effectiveness of compression.

We also categorize models to compressibility groups and
introduce a tunable lossy compression technique that can further
reduce size even on the group of less compressible models with
little to no effect on the model accuracy. Finally, we explore
the usefulness of delta compression for checkpointing and model
variations.

We estimate that these methods could save over an ExaByte
per month of network traffic downloaded from a large model
hub like Hugging Face.

I. INTRODUCTION

With scale, we have learned that models gain performance
and with it, gain popularity. With scale, models also require
more memory and with popularity more communication band-
width. Taken together, we observe strains on communication
bottlenecks that call for efficient solutions. Storage require-
ments, while often ignored, may accumulate to hundreds or
thousands of times the size of a model if checkpoints [1] or
distributed updates are to be saved (c.f., VI) [2]–[4].

Similarly, models are repeatedly moved around in multiple
channels: from a storage hub to inference machines; from
training/fine-tuning nodes to the storage backend; between
GPU nodes during distributed training and so on. Network
hubs epitomize the strains by model size. For instance, with
over 14.5 GBs and 2.77 M downloads per month from Hug-
ging Face [5] Mistral [6] alone requires 40 PBs of transferred
information a month.

A large body of work has been aimed at reducing model
sizes focusing on the number of computations in inference.
Such methods transform the model into a smaller one in an
irreversible fashion. For example, distillation [7], pruning [8]
and quantization [9] either remove nodes from the network or
reduce each parameter size. Since these methods main focus
is on inference speed, they are bound to create a format of

an actual running model. As such, they don’t necessarily push
the space saving to its limit, and are not stored in the minimal
possible way.

In this work, on the other hand, we follow a more traditional
definition of compression typically used for networking and
storage. Compression that is also accompanied by a decom-
pression process, returning a model to its original size and
usability. This definition encompasses among other things all
forms of lossless compression.

Surprisingly, we observe (§III) that even standard lossless
compressors like zlib [10] or zstd [11] can achieve meaningful
savings and these can be further amplified using specialized
modifications to the compressors. While common rationale
expects model parameters to have high entropy and therefore
be non-compressible, we find that in reality there is ample
redundancy in representation. We classify popular models
from Hugging Face [5] into three categories with distinct
compressibility traits helping to understand when and for what
models it is beneficial to employ lossless compression.

After exploring the source of compressibility in models we
introduce byte grouping – an adaptation that is tailored for the
models use case (§III-B). The method rearranges the bytes
in a model to compress the different bytes of the parameters
together. This results in grouping of similar bytes which in
turn yields better compression.

We make another key observation, that fine-tuning of
models often degrades their compressibility (at times sig-
nificantly). This high entropy in the parameters often stems
from minuscule updates. To overcome this, we introduce a
novel tunable lossy compression method that can significantly
improve compression ratio with no measurable harm to model
accuracy. In a nutshell, this technique allows for incurring
controlled inaccuracies to parameters, under the assumption
that a lot of the entropy in model weights is actually redundant,
i.e., noise saved to disk. Surprisingly, we find ranges where
those precision reductions can even slightly benefit the model,
corroborating a few similar findings (see §VI). While the
goal of this work is not to affect models, this unexpected
phenomenon is worth mentioning.

Finally, we explore the benefits of delta compression and
show that by compressing the delta between two similar mod-
els one can achieve compression far greater than compressing
a standalone model. This is useful for checkpointing and
management of model variations.

2

TABLE I
TOP RANKED DOWNLOADED MODELS FROM HUGGING FACE AND THE POTENTIAL TRAFFIC SAVINGS IF COMPRESSED.

MODEL MODEL #MONTHLY RANK COMPRESSION POTENTIAL
NAME SIZE DOWNLOADS RATIO SAVINGS

WAV2VEC 1.26 GB 63M #1 85.2% 11.7 PB
BERT 0.4 GB 43.7M #2 85.3% 2.6 PB
ROBERTA 0.5 GB 15M #3 47.0% 4 PB
GPT2 0.5 GB 14.6M #4 78.1% 1.6 PB
CLIP 1.7 GB 14.3M #5 50.1% 12.2 PB
MISTRAL 14.5 GB 2.77M #˜60 71.0% 11.6 PB
BLOOM 328.2 GB 278K #100+ 71.4% 26.1 PB

II. BACKGROUND

A. Motivation - use cases

With small models weighing about a Gigabyte [12] and
large ones Terrabytes [13] storage by itself is an issue for
many purposes. However, common use cases require many
model types or model versions and hence increased resources.
We list some below as a motivation.

1) Model Hubs: Large model repositories or hubs like
Model Zoo [14], PyTorch [15], Tensorflow [16], Adapter [17],
Hugging Face [5], IBM watsonx.data [18] and Qualcomm®
AI Hub [19] hold a large number of models and serve
numerous download requests of popular models. As of 2024,
Hugging Face, the largest model hub, transfers PetaBytes of
data every day, primarily downloaded data. Table I shows some
of the top ranked models1 and their compression ratio (using
the methods described in Section III-A). As seen, the potential
traffic savings from compression is substantial. Note that the
same trends also apply to models that are not downloaded as
often, for example, the Bloom model offers significant savings
due to its large initial size.

In this use case, there are three ways in which compression
can be beneficial, the first and the most important is to reduce
the amount of data transferred, the second is to reduce the
amount of data stored and the third is to reduce the time to
download and upload those models.

2) Distributed Training: transfer data between nodes during
training to overcome the need to save the full model and
computation on a single GPU/node. In some methods, only
the model weights are transferred between nodes and in other
methods, the optimizer weights and gradients are transferred
as well [20]. Either way, distributed training is usually limited
by data transfer between nodes, so compressing this data can
help train larger models.

3) Decentralized algorithms: Along the different ways to
distribute the computation along nodes. Some methods pro-
pose to alternate training or the models themselves to accom-
modate different contributors training the same model. This
stems from federated learning that contributes gradients [4], to
contributing partially trained models [21], from changing the
kinds of updates done [22] to relying on volunteer computing
[23], or even relying on different objectives and expertise
all merged into the same model [3]. All of those methods

1Rank as of August 2023 except for Mistral taken in March 2024.

inherently transfer and store a lot of model versions, which
also drove dedicated version control frameworks [2],

4) Checkpoints and Versions: During model creation, mul-
tiple intermediate versions of the models are commonly saved.
This often includes tests on the training regime such as
hyperparameter tuning [24]. Even during the training of a
single model, the current model is periodically checkpointed
to recover after a crash, to select the best checkpoint from
a few options [25], for analysis [1], improve performance
[26], [27] etc. Even though saving during checkpointing rarely
slows the training time, it does burden the networking and
storage, limiting the frequency and amount of saved and shared
checkpoints, which are encouraged by the community (e.g.;
[1], [28]).

B. Models Structure and Types

0 0

sign exponent (8 bit) Fraction (23 bit)

FP32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign exponent (8 bit) Fraction (7 bit)

BF16

31 30 23 22 0

15 14 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign exponent (5 bit) Fraction (10 bit)

FP16

15 14 10 9 0

Fig. 1. FP32, a sign bit + 8 bits exponents + 23 bits of mantissa. BF16, a
sign bit + 8 bits exponents + 7 bits of mantissa. FP16, a sign bit + 5 bits
exponents + 10 bits of mantissa

a) Models.: Regardless of the architecture, current mod-
els are mainly a function of many matrices or tensors of
different sizes and a code that can read the parameters in the
matrix and convert it to a function. While a layer may contain
several such tensors, for brevity we call each tensor a layer.
We note that the code is negligible in weight and hence the
main focus of our compression is reduced to tensors, or even
put more simply, long arrays of numeric parameters.

3

One main variant in models that strongly affects com-
pression tendencies is the type of parameters that make up
a model. Parameters typically represent real numbers and
as such the most straightforward (and popular) approach is
to hold them using floating point numbers. Floating point
is a way to represent real numbers using a fixed number
of bits but a flexible scale that allows for larger numerical
ranges. In a nutshell, floating point contains an exponent part
- representing the range in which the real number lies, and
a mantissa or fraction representing the actual number within
this range. To this, a sign bit is added indicating whether a
number is positive. For example, FP32 is a 32 bit floating
point number with a sign bit, an 8 bit exponent and a 23
bit mantissa (see Figure 1). The real number is calculated
by (−1)sign · 2exponent−127 · 1.fraction. Another popular
parameter type used for models is BF16 [29] which simply
cuts the tail end of the fraction (hence reducing the precision
level) but maintains the same exponent as shown in Figure 1.

III. COMPRESSION FOR MODELS

In this section, we introduce the basics of lossless compres-
sion variants that are relevant to model and present our variant
of lossy compression. Note that in this paper, we evaluated
only compression run in the CPU, since the GPU computations
and GPU memory are more valuable resources, whereas CPU
computations and CPU memory are typically abundant.

A. Lossless compression

Lossless compressors are the traditional form of compres-
sion and are widely used for reducing network and storage
overheads in all fields of computing. They consist of two
algorithms – compression and decompression where after
applying both in sequence the output returns to the exact
same state. There are countless compression techniques, those
vary in the tradeoff between compressibility and compres-
sion/decompression time (see for example; [30]).

Throughout the paper, we measure the compression ratio.
Namely, the percentage of the data that is left after compres-
sion – lower is better. For example, if the method compresses
a GB into a quarter of a GB it has a compression ratio of
25%.

The main techniques employed in lossless compression are
based on repetition removal (stemming from the seminal work
of [31]) and entropy encoding (e.g. [32], [33]) which reduces
the entropy seen at a byte level and represents such bytes at
a bit level granularity.

We observed that compressors that employ solely repetition
removal (such as LZ4; [34]) are not very beneficial when
compressing models. This is expected since to remove a
repetition a span of multiple parameters should repeat itself.
However, model tensors are not structured and parameters
typically do not have an affinity with their neighbours, making
repetitions that span multiple parameters scarce. For the rest of
our experiments, we choose compressors that also use entropy
encoding such as Zlib [35] or Zstd [36]. In our experiments, we
chose Zstd as the underlying compressor/decompressor due to
its superior speed vs. compression tradeoff [30], [36]. Note that

once Byte Grouping (see §III-A1) is used, then LZ4 fairs much
better, but still Zstd is far superior in terms of compression
ratio. For example, for RoBERTa we get 47.0% with Zstd vs.
56.7% with LZ4 and for Bloom we get 71.4% with Zstd as
opposed to 80.5% with LZ4.

1) Understanding Model Compressibility and Byte Group-
ing: Initially, one may expect models to be non-compressible
and show high entropy, as parameters may encode unpre-
dictable information and differ from each other. This is correct
to a certain degree, but in reality, the actual range in which
parameters reside is typically limited, which reduces the
entropy and opens the door for compression to be effective.

Take a model with FP32 parameters for example. It will
have high entropy in its fraction (or mantissa), but relatively
low entropy in the exponent, as the parameter scales are quite
limited. Therefore it makes sense to compress exponents and
mantissa bytes separately. Indeed, compressing the exponent
bytes without the interference of the mantissa bytes yields
higher compressibility.

We suggest Byte Grouping which groups together bytes
from the same position in all the model’s parameters. If each
parameter in the model consists of several bytes (typically
2 or 4 bytes), then group together the first byte from all
parameters, then the second byte, etc., as shown in Figure 2.
Note that since typical models use the same parameter type
throughout the model, then byte grouping can be done without
real knowledge on the model structure (except parameter type)
and for example can be executed even on models that are
already stored as a binary file.

Our test shows that byte grouping the data before compress-
ing it can improve the compression ratio between 7%-30% (see
Section III-B).

Fig. 2. An example for Byte Grouping, each parameter has 4 bytes and we
group them into 4 arrays.

2) The Sign Bit: Another observation is that the sign
bit tends to hold high entropy and that compressing it to-
gether with the exponent byte interferes with compression
effectiveness. To overcome this, we consider the following
approach to deal with the sign bits: translate the stream into
an unsigned stream (for example, using the abs function) and
store the sign values separately. The unsigned values are then
fed into the compressor. This method can further improve
the compression ratio without further affecting the precision.
However, with lossless compression our experiments showed
that the compression benefit is relatively low - on the order of
1%, making it unappealing due to its computational overhead.

B. Model compressibility with Lossless Compression
While model compressibility has high variance, we observe

that there are essentially three popular categories of models

4

TABLE II
COMPRESSION RATIO OF MODELS AFTER ZSTD COMPRESSION WITH BYTE GROUPING.

MODEL PARAM MODEL COMPRESSION COMPRESSION RATIO
NAME TYPE SIZE RATIO PER BYTE GROUP

WAV2VEC FP32 1.2 GB 85.2% (42.9%, 99.0%, 99.0%, 98.6%)
BERT FP32 0.4 GB 85.3% (41.2%, 99.0%, 99.0%, 99.0%)
GPT2 FP32 0.5 GB 78.1% (38.9%, 90.8%, 90.8%, 90.8%)
ROBERTA(1 EPOCH) FP32 0.5GB 80.7% (42.9%, 99.9%, 93.5%, 86.4%)
ROBERTA(9 EPOCHS) FP32 0.5GB 82.5% (42.9%, 99.9%, 96.9%, 90.2%)
STABLE-VIDEO-DIFFUSION FP16 4.27GB 84.9% (69.8%, 100%)
CAPYBARAHERMES-MISTRAL FP16 14.5 GB 83.7% (68.7%, 98.7%))
ROBERTA FP32 0.5 GB 47.0% (42.9%, 99.9%, 44.7%, 0.005%)
XLM-ROBERTA FP32 1.1 GB 45.7% (42.6%, 95.7%, 44.6%, 0.002%)
CLIP FP32 1.7 GB 50.1% (42.1%, 99.0%, 49.0%, 8.0%)
T5 BASE FP32 0.8 GB 35.7% (42.6%, 99.9%, 0.005%, 0.005%)
LLAMA-13B FP16 26 GB 66.8% (69%, 64%)
TULU-7B FP16 13.5 GB 66.6% (68.9%, 64%)
FALCON-7B BF16 14.4 GB 71.3% (42.7%, 100%))
BLOOM BF16 328.2 GB 71.4% (42.3%, 100%)
OPENLLAMA-3B BF16 6.9 GB 71% (42.1%, 100%)
MISTRAL BF16 14.5 GB 71% (42.0%, 100%)

from a compressibility standpoint. Table II shows examples
of models from the three various categories, all compressed
using Zstd with its default setting (level 3) and employing the
Byte Grouping technique.

The first category of models are mainly compressible in the
exponent and hence have more modest savings, on the order
of 15-20% (namely with a compression ratio of ∼80-85%).
Those models are saved in FP32 of FP16. The main source of
compressibility for these models is the exponent byte which is
highly compressible (around 40%), but the other bytes hardly
compress at all.

The second category includes “clean” models, or base
models. These have high compressibility stemming from both
the exponent and the two lower bytes of the mantissa. The
second byte, in all cases, is incompressible and holds most
of the model’s entropy. Overall these models show very high
compressibility (reducing the size by 50-65%) and prove
very attractive for compression. Note that some of the most
downloaded models from Hugging Face fall into this category.
This leaves the two lower bytes zeroed. We call these clean
models because after fine tuning they lose much of their
compressibility. For example, We fine tuned the RoBERTa
model (using the Rotten Tomatos public dataset [37]) and see
that even after a single epoch of fine-tuning the model falls
into the first category and only saving 20%. After 9 epochs
of fine-tuning the compressibility is even slightly worse. The
source of compressibility in the clean models stems from using
only parts of the available entropy during the training of these
models. For example, the T5 model is trained in a 16-bit
environment and then cast into an FP32 parameter for further
fine-tuning [38]. In other models the lower bytes do have some
entropy in them, but not as high as the random looking bytes.

The final category is of BF16 models that show ∼30%
space savings. Like the first group, the exponent is very
compressible, and the mantissa is not, but in these models,

the savings are more significant as the exponent makes up a
larger part of the model.

In the evaluation above we used mainly highly downloaded
models from the Hugging Face hub to check for realistic
scenarios (see full model list in Appendix A). We include
models from different modalities, sizes, architectures and
saving float formats. We split them to the 3 groups mentioned
above.

To account for how commonly each model was downloaded
or what version was tested (models are rarely changed after
upload, but technically one can commit an update) all numbers
were gathered in August 2023 except for the Mistral model
and the FP16 models which were updated in March 2024.

a) The benefit of Byte Grouping: Byte grouping benefits
also vary between the categories. Byte grouping reduces the
size of the compressed model by 7-8.2% on the first category,
by 19-27% on the clean model category and by 8.5-10% on
the BF16 category. We note that if LZ4 was used then the
effect of byte grouping is massive and without byte grouping
these compressors manage nearly no compression at all. For
example, LZ4 on RoBERTa fails badly and achieves only 95%
compression ratio, but with byte grouping, this jumps to 56%.

C. Tunable Lossy Compression

The observation that fine-tuning greatly diminishing the
model compressibility suggests that tweaking of parameters,
even if very minor, introduces a lot of entropy. This phenom-
ena is amplified by the use of floating point arithmetic which,
by design, invests a significant amount of bits even to very
small numbers. However, in reality, parameters with very small
numbers tend to have a very minor effect on the results of
model inference, if at all. This suggests that removing some
of the entropy dedicated to very small numbers could increase
model compressibility without actually changing the model
results or accuracy.

5

Thus we introduce a tunable lossy compression technique
that may significantly improve compression savings at the
expense of small measurable changes to the original model.
In a nutshell, the proposed method casts every parameter
into an integer representation with a chosen level of fixed
precision, in essence trimming some of the least bits. Then
compression follows as before using byte grouping and a
standard lossless compressor. The full decompression of our
tunable lossy technique returns the model to its original format
albeit zeroing some information that resided in the least bits.

Formally, given a parameter θ in floating point represen-
tation, and precision B = 2b the casting is done as follows.
First, multiply the parameter by the precision factor and then
cast it into an integer, effectively rounding it to ⌊θ · B⌋. The
transformed parameters are then fed into a standard lossless
compressor. During decompression, the stream first undergoes
standard decompression and then the resulting integers are
transformed into floating point after division by the precision
factor. Note that floating point parameters typically lie in the
range [−1, 1]. The meaning of multiplying by the precision
factor and rounding is that anything smaller than 1 after the
multiplication is discarded. Thus, the greater the precision
factor, the more of the parameter’s original entropy is kept.
Choosing a precision factor of 2b essentially means that we
only discard quantities that are smaller than 2−b. Maintaining
a higher precision implies preserving more information or less
“lossy” compression.

A small tweak we add deals with outlier values such as
parameters that are outside of the range [-1,1]. These are
problematic because when multiplied by the precision factor
they may overflow the integer range. In such a case we
forgo compression of the layer and mark this layer as non-
compressible. Note also that compressing unsigned integers
and adding the signed bits separately (as described in Sec-
tion III-A) turns out to be more significant with tunable lossy
compression, so our tests include this optimization as well.
The improvement from separating the sign bit grows as the
precision factor drops – from ∼3% in the case of B = 227 to
more than 16% for B = 215.

D. Compression vs. Accuracy with Tunable Lossy Compres-
sion

One desirable trait of this method is that the amount of
information lost is tunable, and determined by the precision
factor chosen. The main question is then, how to choose this
precision factor?

We offer some rules of thumb that help identify levels
that we can push our precision factor to without harming the
accuracy of general models. We expect that there is an accu-
racy level of weight information beyond which information is
actually redundant for the computation. This is basically true
by construction, as training mechanisms introduce such errors
during training, considering it beyond their precision. For
example, in order to avoid zero values, Adam’s epsilon defaults
in PyTorch [39] and Tensorflow [40] are set to 10−8 and to
10−7 in Keras [41] deeming anything below this precision
irrelevant. Under this assumption rounding anything below

10−8 or 10−7 is a safe choice and choosing a precision factor
of B = 227 or B = 224 (respectively) will not insert more
noise than what is done naturally in the training process.

A further argument postulates that Floating Point 32 arith-
metic inserts precision error all the time - for example, when
adding very small numbers to relatively large numbers, the
small numbers may lose their accuracy. For FP32 this happens
naturally during computations (such as inference and training)
introducing errors of up to 2−23. Under this rationale, using a
precision factor of B = 223 is not expected to change overall
outcomes more than what arbitrary FP32 operations might do.

Using B = 223 offers significant savings and improves
compression ratio significantly for the FP32 models, reducing
the compressed model by an additional 20%, for example
reducing wav2vec compression ratio from ∼85% to ∼68%.

To test this rationale we checked two base models with
measurable fine-tuned performance. The first set of fine-tuned
models are trained variants of T5 on CNN-DM [42], XSUM
[43], SQUAD [44], asQA [45], wikiAns [46] WMT22En-
Ru [47]. Those were evaluated using exact match, Rouge-
L [48] and sacreBleu [49], but due to the heavy cost of
fine-tuning to evaluate, we only evaluated the model under
two precision values B = 224 and B = 219. The results
were very encouraging and we did not observe a significant
change in model performance. The compression for these two
configurations was 70% and 56% compared to 85% with only
lossless compressors.

We ran a more detailed test on RoBERTa fine-tuned on
the RottenTomatos dataset [37] and the results are shown in
Figure 3. We see that model accuracy remains high (near
90%) until B = 26 and drops dramatically beyond that. The
compression on the other hand improves at an almost linear
rate culminating at around 20% before the drop-off. Note
that there is even a slight rise in accuracy just before the
drop, a phenomenon that we saw also in other tests. Note
that running this method on the “clean” version of RoBETRa
yields no benefits before reaching B = 218 which aligns with
our understanding.

These large cuts in precision with no change in accuracy
have empirical and theoretical implications. Empirically, they
suggest that much higher compression gains could be achieved
with tuning. Theoretically, it may mean there are other training
factors stronger than the computation errors above. Possibly,
those are not calculation errors but traits of the network such
as noise in gradient updates [50].

This technique is similar in nature to quantization tech-
niques but is more tunable than quantization with the flexible
precision factor, whereas quantization is limited to sizes that
can naturally run the actual models like 16 or 8 bits. We
elaborate on previous works suggesting low sensitivity to
precision in §VI.

IV. EVALUATION

A. Integration in PyTorch
In order to make our compression applicable and easy to

use we integrated these methods into PyTorch functions. py-
torch.save() and pytorch.load(). These functions are used dur-
ing uploading and downloading models from Hugging Face.

6

ZST
D

ZST
D_BG272625242322212019181716151413121110 9 8 7 6 5 4 3 2

0

10

20

30

40

50

60

70

80

90

100
Co

m
pr

es
sio

n
Ra

tio
 (%

)
Compression Ratio (%)

0

10

20

30

40

50

60

70

80

90

100

%
 A

cc
ur

ac
y

% Accuracy

Fig. 3. Fine tuned RoBERTa compression and accuracy as a function of the
precision factor parameter b (i.e., for b = 27 the factor is B = 227. The
first two values are lossless compression without and with byte grouping.

This integration is the base for our timing evaluation below.
Our intention is to contribute this code upstream into Pytorch
in order to make compression a standard easy to use compo-
nent for the community.

We implemented two approaches to compression, one com-
pressing the entire model as a bin file and the other compress-
ing each layer separately. The latter approach turned out faster
for downloads (and slightly slower for uploads), and we use
it in the model hub use-case that we evaluate next, which is
downloads dominant.

B. Setup

In Sections III-B and III-D we present the compressibility
traits of various models. In this section, we focus on time
aspects and end-2-end timing of our first use-case - that of
model hubs. We measured the time it takes to upload and
download from Hugging Face to a virtual machine that runs
on one of the cloud providers and is Located in the Milan
region. We also measured upload and download performance
on a home laptop with a 500Mbps network.

Unlike storage benefits, communication speeds depend
heavily on the medium. We first characterized the general
behavior of the communication with the Hugging Face hub.
The upload bandwidth observed in the cloud remained mostly
constant (at around 20 MBps). On the downloads, we observed
2 types of data transfer speeds.

• First Download - The speed in the first download showed
large variance was between 20-40 MBps on the cloud
VM. The home machine got approximately 10MBps.

• Cached Download - From the second read on the data
is likely downloaded from a cloud cache and exhibits
speed of 120-130 MBps in the cloud and approximately
40MBps at the home location.

We measured timing with lossless compression on 3 models,
one from each of the model groups presented in Section
III-B. Specifically, we used wav2vec, XLM-RoBERTa and
Openllama. We used ZSTD in default setting (level 3) and byte

grouping. We also measured the timing of lossy compression
on wav2vec.

C. Results

The end-2-end timing behavior is dictated by the time
to compress/decompress the model and the time to up-
load/download it respectively. There is additional work done
that is mostly constant and does not change with compression.
For the overall time to be better than vanilla torch.save
and torch.load, the benefits of uploading/downloading less
data need to overcome the overhead of the actual compres-
sion/decompression. Figure 4 shows the timing of upload and
download of three models. Each test was run 10 times for
the cached reads and 5 times for the 1st timers. The variance
was almost entirely due to the network time and this standard
deviation is depicted in the graph. The actual compression
and decompression time had very little variance. For example,
in the xlm-RoBERTa the average time for load part (which
includes the decompression) was 3.92 seconds with a standard
deviation of 0.017.

As expected, highly compressible models show significant
time improvements whereas the less compressible model cat-
egory struggles to maintain the same non-compressed timing
(but for the most part manages to do so). Naturally, the
time saving is more significant when the network is slower.
Therefore the cached reads in the cloud hardly save time even
for the clean model and add a small overhead for the less
compressible model. The upload time shows significant time
improvement since the bandwidth for uploads is low. On the
other hand, the upload savings are lower than download with
similar bandwidth reflecting the fact that compression is slower
than decompression.

For the first group of models that are hardly compressed,
it is worthwhile to also test the tunable lossy compression.
Figure 5 shows a breakdown of the download time of the
wav2vec model on a 30MBps network and includes lossy
compression with precision parameter 223. As expected for
this model category the time savings with lossless is marginal,
yet with the lossy compression it manages to reduce download
time by almost 20% and maintains a slight edge over vanilla
Pytorch even with the cloud cache network of 120MBps.

The breakdown of upload time is presented in Figure 6.
The lossless technique was just 1% faster than vanilla PyTorch
while the lossy version managed to save 16% of the upload
time. Note that the tested implementation of tunable lossy did
not include the sign bit optimization, as its time overhead did
not justify the improved compression ratio. The lossy compres-
sion ended up with a 72% compression ratio (versus 85% with
the lossless compression). Interestingly, the compression time
of lossy compression was slightly faster than in the lossless
case. This is likely due to the improved compression ratio
which typically translates to faster compression speeds.

V. BEYOND FULL MODEL COMPRESSION

A. Delta compression.

When models have high similarity, one strategy to optimize
storage and network transfer is to save a base model and for

7

10MB/s
1st

Home
Machine

20MB/s
Upload
Cloud

Machine

30MB/s
1st

Cloud
Machine

125MB/s
Cached
Cloud

Machine

50

60

70

80

90

100

%
Ti

m
e

fro
m

 v
an

illa
 P

yT
or

ch

Vanilla PyTorch
WAV2VEC [CR: 85.2%]
XLM-RoBERTa [CR: 45.7%]
OPENLLAMA [CR: 71%]

Fig. 4. Download and upload times of 3 models using full model compression
vs. the non-compressed version.

0

10

20

30

40

50

60

Vanilla PyTorch Pytorch with
lossless comp

Pytorch with lossy
comp (2^23)

Se
co
nd
s

Download Torch.load including decompression Constant overhead

Fig. 5. Breakdown of download time for the wav2vec with a
30MBps network.

the rest of the models only store the differences from this
base model [2]. We refer to compressing those differences as
delta compression. To reconstruct a model, one only needs to
apply the delta to the base model. A straightforward approach
to delta compression is to compute the difference between the
two models (e.g. using XOR or subtraction) and compress this
delta using a standard compressor.

A natural use case in which delta compression proves very
useful is checkpointing. In checkpointing, we repeatedly store
models that have limited change between them. As mentioned
in discussing tunable lossy compression (§III-C), fine tuning
often changes models by small quantities. Hence the delta
between the results of consecutive training epochs is highly
compressible. This is true for lossless compression (especially
with byte grouping) as well as tunable lossy compression.
Figure 8 shows this for consecutive fine tuned epochs of the
RoBERTa model. We see that lossless compression is as low
as 55% (with byte grouping), down from nearly 83% of this
model standalone. Figure 7 shows the compressibility of the
10th epoch vs. the base RoBERTa which is useful as it avoids
maintaining long chains of deltas. In this case, the delta is less
compressible but still achieves a 65% compression ratio. Using
tunable lossy compression proves to be very beneficial also in
delta compression. For example, taking B = 223 achieves a
compression ratio of 37% for consecutive models and 49%

0
10
20

30
40
50
60

70
80
90

Vanilla PyTorch Pytorch with lossless
comp

Pytorch with lossy
comp (2^23)

Se
co

nd
s

Torch.save including compression Git add Git Push

Fig. 6. Breakdown of upload time for the wav2vec model with a
20MBps network.

vs. the base model without affecting model accuracy. It is
worth noting that an aggressive choice of the precision factor
can achieve below 10% (over 90% savings!) without harming
accuracy and in fact even achieving a slight improvement to
the accuracy.

Another use-case is when a hub or user stores multiple
models with high similarity (regardless of checkpointing). One
source for such occurrence is when multiple models are trained
or fine tuned from the same base model. For example, we
found in Hugging Face 3 variations of RoBERTa trained on
tweets and fine tuned for different purposes (For the exact
model names, see Appendix C) - detecting irony, detecting
offensive language and detecting abuse. As standalone models,
their compression ratio (lossless with byte grouping) is 85.7%
on average. However, when compressing the delta of each of
the pairs achieves a ratio of 56% on average.

Another example is a set of models that are fine tuned on
the twitter data set once every 3 months. The results, shown
in Figure 9, show that delta compression is most beneficial in
consecutive versions and its effectiveness slowly deteriorates
over time.

B. Compressing Gradients and Optimizers

So far, we have mostly focused on compressing the actual
models, but in various cases, such as distributed training or
checkpointing, derivatives of the model also take up resources.
Specifically, Gradients and Optimizers usually occupy a sub-
stantial amount of the communication, often of equal in size
to the models [51]. We find that these components can also
benefit from compression.

We investigate a BF16 version of RoBERTa. Figure 10
shows the break down of compressibility of the gradients
broken down according to different layers. This is contrasted
with the breakdown of the actual model in Figure 11. Not only
that we find that most of the weights in the gradient compress
similarly to regular weights. We find that token embeddings
are extremely compressible, despite not showing a different
behavior in regular models.

The optimizers show similar compressibility traits to the
gradients. Namely, the embedding layer is extremely com-
pressible and the general layers compress to around 67%,
slightly better than these layers in the model itself as shown
in Figure 12.

8

xor
_ZST

D

xor
_ZST

D_BG272625242322212019181716151413121110 9 8 7 6 5 4 3 2
0

10

20

30

40

50

60

70

80

90

100
Co

m
pr

es
sio

n
Ra

tio
 (%

)
Compression Ratio (%)

0

10

20

30

40

50

60

70

80

90

100

%
 A

cc
ur

ac
y

% Accuracy

Fig. 7. Compression ratios and accuracy of the delta between two fine tuned
RoBERTa model in consecutive epochs (after 10 epochs and after 9 epochs).

xor
_ZST

D

xor
_ZST

D_BG272625242322212019181716151413121110 9 8 7 6 5 4 3 2
0

10

20

30

40

50

60

70

80

90

100

Co
m

pr
es

sio
n

Ra
tio

 (%
)

Compression Ratio (%)

0

10

20

30

40

50

60

70

80

90

100

%
 A

cc
ur

ac
y

% Accuracy

Fig. 8. Compression ratios and accuracy of the delta between the fine tuned
RoBERTa model after 10 epochs and the base.

TABLE III
COMPRESSION RATIO OF QUANTIZED MODELS AFTER ZSTD COMPRESSION WITH BYTE GROUPING.

MODEL PARAM MODEL COMPRESSION COMPRESSION RATIO
NAME TYPE SIZE RATIO PER BYTE GROUP

CAPYBARAHERMES-MISTRAL FP16 14.5 GB 83.7% (68.8%, 98.7%)
CAPYBARAHERMES-MISTRAL GPTQ 8B 1GB ACTORDER 8BIT 7.5 GB 86.6% (86.5%, 86.6%)
CAPYBARAHERMES-MISTRAL GPTQ 8B 32GB ACTORDER 8BIT 8.2 GB 90.3% (88.5%, 92.1%)
CAPYBARAHERMES-MISTRAL GPTQ 8B 128GB ACTORDER 8BIT 7.7 GB 91.2% (90.8%, 91.7%)
CAPYBARAHERMES-MISTRAL GPTQ 4B 32GB ACTORDER 4BIT 4.6 GB 85.4% (82%, 88%)
CAPYBARAHERMES-MISTRAL GPTQ 4B 64GB ACTORDER 4BIT 4.3 GB 84.7% (83.2%, 86.25%)
CAPYBARAHERMES-MISTRAL AWQ 4B 4BIT 4.15 GB 87.6% (86.9%, 88.3%)

Mar-
20

Jun
-20

Se
p-2

0
Dec-

20
Mar-

21
Jun

-21
Se

p-2
1

Dec-
21

50

60

70

80

90

100

Co
m

pr
es

sio
n

Ra
tio

 (%
)

standalone model
delta from base
delta from previous model

Fig. 9. Compression ratio (lossless with byte grouping) of RoBERTa
finetuned on tweets that occurred up until the month in the X-axis. We
compare the compression of the standalone model to compression of deltas
of consecutive models and compression of delta from one base.

VI. RELATED WORK

A. Model Compression
In the literature, ”model-compression” is a field of its own,

aimed at creating smaller models, that mimic the original

238 MB

74 MB

0.75 MB

164 MB
118 MB
[49.4%]

0.61 MB
[0.8%]

0.06 MB
[8.3%]

117 MB
[71.5%]

0

50

100

150

200

250

all layers word
embeddings

position
embeddings

other layers

Original data Data after compression
Fig. 10. Compressibility of layers in the Gradients

model. Model-compression is hence the name for a set of
tools that aim to accelerate models, usually at inference, by
reducing their size [52]. Under such conditions, a method is
allowed to reduce the accuracy, and is judged on its tradeoff
between size and performance. This differs from lossless
compression which is supposed to return the model to its
original state after decompression.

9

238 MB

74 MB

0.75 MB

164

170 MB
[71.35%]

53 MB
[71.53 %]

0.53 MB
[70.8%]

117 MB
[71.27%]

0

50

100

150

200

250

all layers word
embeddings

position
embeddings

other layers

Original data Data after compression

Fig. 11. Compressibility of layers in the model

…

147MB

1.5MB

327 MB

227MB
[47.7%]

8MB
[5.4%]

0.1MB
[8%]

219MB
[67%]

0

100

200

300

400

500

All layers word
embeddings

position
embeddings

layer2-200

O p tim izer co m p ressio n

Original data Data after compression

Fig. 12. Compressibility of layers in the Optimizer

There are four main methods to reduce model size in that
manner [52]. Pruning [53]–[55] (sometimes referred to as
sparsification; [8]) where parts of the model are removed,
dedicated training or network architecture [56], distillation [7]
or otherwise training a smaller model from a better model
[57] and quantization [9]. There are also methods combining
several of those [58], including the only work we have found to
propose compression, which it applies after two other model-
compression steps [59].

B. Quantization

Out of the model-compression techniques, quantization is
the most similar to the tunably lossy compression we discuss
in this paper (§III-C). Quantization [60] is a method that bins
weight values to a more coarse granularity. Since the model
would be used as is, quantization is limited in the granularity to
which it can compress models. For example, it cannot reduce
to 23 bits (typically 16 is the first viable choice). Moreover,
quanitization is not optimized for the smallest representation
of the model and in fact quantized models can potentially
be further compressed. We examine off-the-shelf quantized
models (For the exact model names, See Appendix B) that
have been quantized with GTPQ [61] and AWQ [62] and

compress them using lossless compression. We see in Table III
that they are still compressible, with a compression ratio
between 85-91%, where byte grouping contributes to the
compression 1-2%.

In a sense, quantization is complementary to compression.
Quantization is able to improve inference speed and to reduce
model size drastically, at costs to inference accuracy or the
ability to further train the model. In contrast, compression
cannot speed inference but can compress models further,
or compress a model without affecting its behaviour at all.
Similar to quantization, our Tunable lossy compression drops
some of the information, but only ones that don’t reduce
accuracy in a measurable way. Unlike quantization, it changes
the representation which is expected to further reduce the size
as seen by the results above.

C. Other Related Work

Interestingly, two recent works also found improved results
by reducing some of the information in the network (see
§III-B). They saw it during pruning [63] or pruning and
extreme quantization [64]. We observe this same phenomena in
the tunable lossy compression. Future work may find a theory
to connect those findings.

Similar to delta compression some works analyze dimen-
sionality [65], [66] or save the deltas for actions such as
compositionally [67] and merging multiple deltas [68]–[70].
Few works also apply on such deltas the above methods,
like pruning [71], trained sparsity [72] or quantization [73]
or discuss deltas.

Another line of work worth mentioning is computation
graph optimization [74], [75]. Such works reduce the com-
putation graph and perform optimization there. It is mostly
noteworthy to contrast it to our work, such work compresses
the size of the computation graph, which speeds computation,
but does not change the model weights, and it is hence
orthogonal to our work. To validate that, we compressed
pyTorch [75] models before and after compilation, finding
compression works similarly well.

Last, related to the optimization process (see §V-B), a few
recent works offer to reduce the information passed in gradient
updates hence making them faster, faster overcoming the
reduce in information per example by seeing more examples
per second [76], [77].

VII. CONCLUSION

We are in an era where models and system requirements
grow larger, overparametrization seems to be beneficial for
better learning. As our compression findings hint, this over-
parametrization is not fully used for inference or for the
weights themselves and there is redundancy. Hence the wide
attention and progress made to reducing model sizes is not
without merit. That being said, the reality is that commonly
used models are not kept or run in reduced form and there is
great inefficiency in the way models are stored and communi-
cated today. Some of this inefficiency can be mitigated using
the compression techniques outlined in this paper.

10

Given the reduction in network bandwidth, storage and
time, we think that lossless compression should be the default
in communication with model hubs such as Hugging Face.
Moreover, we believe that communication compression has
multiple other use-cases in the realm of training, versioning
and serving models.

REFERENCES

[1] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff,
A. Skowron, L. Sutawika, and O. van der Wal, “Pythia: A suite for
analyzing large language models across training and scaling,” ArXiv,
vol. abs/2304.01373, 2023.

[2] N. Kandpal, B. Lester, M. Muqeeth, A. Mascarenhas, M. Evans,
V. Baskaran, T. Huang, H. Liu, and C. Raffel, “Git-theta: A git
extension for collaborative development of machine learning models,”
arXiv preprint arXiv:2306.04529, 2023.

[3] S. Don-Yehiya, E. Venezian, C. Raffel, N. Slonim, and L. Choshen,
“ColD fusion: Collaborative descent for distributed multitask finetun-
ing,” in Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (A. Rogers,
J. Boyd-Graber, and N. Okazaki, eds.), (Toronto, Canada), pp. 788–806,
Association for Computational Linguistics, July 2023.

[4] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

[5] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Hugging-
face’s transformers: State-of-the-art natural language processing,” ArXiv,
vol. abs/1910.03771, 2019.

[6] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[7] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, pp. 1789–
1819, 2021.

[8] X. Ma, M. Qin, F. Sun, Z. Hou, K. Yuan, Y. Xu, Y. Wang, Y.-K. Chen,
R. Jin, and Y. Xie, “Effective model sparsification by scheduled grow-
and-prune methods,” arXiv preprint arXiv:2106.09857, 2021.

[9] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021.

[10] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” tech. rep., 1996.

[11] Y. Collet and M. Kucherawy, “Zstandard compression and the applica-
tion/zstd media type,” tech. rep., 2018.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics,
2019.

[13] W. Fedus, B. Zoph, and N. M. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” J. Mach.
Learn. Res., vol. 23, pp. 120:1–120:39, 2021.

[14] J. Yu Koh, “Model zoo (hub),” 2018.
[15] Pytorch, “Pytorch hub,” 2019.
[16] Google, “Tensorflow hub,” 2018.
[17] J. Pfeiffer, A. Rücklé, C. Poth, A. Kamath, I. Vulić, S. Ruder, K. Cho,

and I. Gurevych, “AdapterHub: A framework for adapting transform-
ers,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations (Q. Liu and
D. Schlangen, eds.), (Online), pp. 46–54, Association for Computational
Linguistics, Oct. 2020.

[18] “Ibm watsonx.data.” https://www.ibm.com/products/watsonx-data.
[19] “Qualcomm® ai hub.” https://aihub.qualcomm.com/.
[20] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,

H. Shojanazeri, M. Ott, S. Shleifer, et al., “Pytorch fsdp: experiences
on scaling fully sharded data parallel,” arXiv preprint arXiv:2304.11277,
2023.

[21] M. Li, S. Gururangan, T. Dettmers, M. Lewis, T. Althoff, N. A. Smith,
and L. Zettlemoyer, “Branch-train-merge: Embarrassingly parallel train-
ing of expert language models,” arXiv preprint arXiv:2208.03306, 2022.

[22] V. Lialin, S. Muckatira, N. Shivagunde, and A. Rumshisky, “Relora:
High-rank training through low-rank updates,” in Workshop on Advanc-
ing Neural Network Training: Computational Efficiency, Scalability, and
Resource Optimization (WANT@ NeurIPS 2023), 2023.

[23] M. Diskin, A. Bukhtiyarov, M. Ryabinin, L. Saulnier, q. lhoest,
A. Sinitsin, D. Popov, D. V. Pyrkin, M. Kashirin, A. Borzunov,
A. Villanova del Moral, D. Mazur, I. Kobelev, Y. Jernite, T. Wolf,
and G. Pekhimenko, “Distributed deep learning in open collaborations,”
in Advances in Neural Information Processing Systems (M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34,
pp. 7879–7897, Curran Associates, Inc., 2021.

[24] R. Turner, D. Eriksson, M. J. McCourt, J. Kiili, E. Laaksonen, Z. Xu,
and I. M. Guyon, “Bayesian optimization is superior to random search
for machine learning hyperparameter tuning: Analysis of the black-
box optimization challenge 2020,” in Neural Information Processing
Systems, 2021.

[25] J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi, H. Hajishirzi, and N. A.
Smith, “Fine-tuning pretrained language models: Weight initializations,
data orders, and early stopping,” ArXiv, vol. abs/2002.06305, 2020.

[26] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. T. Hoang,
K. Heafield, T. Neckermann, F. Seide, U. Germann, A. F. Aji, N. Bo-
goychev, A. F. T. Martins, and A. Birch, “Marian: Fast neural machine
translation in c++,” in Annual Meeting of the Association for Computa-
tional Linguistics, 2018.

[27] M. Sandler, A. Zhmoginov, M. Vladymyrov, and N. Miller, “Training
trajectories, mini-batch losses and the curious role of the learning rate,”
ArXiv, vol. abs/2301.02312, 2023.

[28] Z. Liu, A. Qiao, W. Neiswanger, H. Wang, B. Tan, T. Tao, J. Li, Y. Wang,
S. Sun, O. Pangarkar, R. Fan, Y. Gu, V. Miller, Y. Zhuang, G. He, H. Li,
F. Koto, L. Tang, N. Ranjan, Z. Shen, X. Ren, R. Iriondo, C. Mu, Z. Hu,
M. Schulze, P. Nakov, T. Baldwin, and E. P. Xing, “Llm360: Towards
fully transparent open-source llms,” arXiv, 2023.

[29] S. Wang and P. Kanwar, “Bfloat16: The secret to high performance on
cloud tpus,” Google Cloud Blog, vol. 4, 2019.

[30] Squash, “Squash compression benchmark,” 2016.
[31] J. Ziv and A. Lempel, “A universal algorithm for sequential data

compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[32] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[33] J. J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM
Journal of Research and Development, vol. 20, no. 3, pp. 198–203, 1976.

[34] Y. Collet, “Lz4 - extremely fast compression,” 2024.
[35] M. Adler and J.-L. Gailly, “Zlib,” 2024.
[36] Y. Collet, “Zstandard,” 2024.
[37] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for

sentiment categorization with respect to rating scales,” in Proceedings
of the ACL, 2005.

[38] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[41] F. Chollet et al., “Keras.” https://keras.io, 2015.
[42] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al., “Abstractive text

summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[43] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme
summarization,” in Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing (E. Riloff, D. Chiang,
J. Hockenmaier, and J. Tsujii, eds.), (Brussels, Belgium), pp. 1797–
1807, Association for Computational Linguistics, Oct.-Nov. 2018.

11

[44] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing
(J. Su, K. Duh, and X. Carreras, eds.), (Austin, Texas), pp. 2383–2392,
Association for Computational Linguistics, Nov. 2016.

[45] I. Stelmakh, Y. Luan, B. Dhingra, and M.-W. Chang, “ASQA: Fac-
toid questions meet long-form answers,” in Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing
(Y. Goldberg, Z. Kozareva, and Y. Zhang, eds.), (Abu Dhabi, United
Arab Emirates), pp. 8273–8288, Association for Computational Linguis-
tics, Dec. 2022.

[46] A. Fader, L. Zettlemoyer, and O. Etzioni, “Open Question Answering
Over Curated and Extracted Knowledge Bases,” in KDD, 2014.

[47] T. Kocmi, R. Bawden, O. Bojar, A. Dvorkovich, C. Federmann,
M. Fishel, T. Gowda, Y. Graham, R. Grundkiewicz, B. Haddow, et al.,
“Findings of the 2022 conference on machine translation (wmt22),” in
Proceedings of the Seventh Conference on Machine Translation (WMT),
pp. 1–45, 2022.

[48] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, (Barcelona, Spain), pp. 74–81,
Association for Computational Linguistics, July 2004.

[49] M. Post, “A call for clarity in reporting BLEU scores,” in Proceed-
ings of the Third Conference on Machine Translation: Research Pa-
pers (O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham,
B. Haddow, M. Huck, A. J. Yepes, P. Koehn, C. Monz, M. Negri,
A. Névéol, M. Neves, M. Post, L. Specia, M. Turchi, and K. Verspoor,
eds.), (Brussels, Belgium), pp. 186–191, Association for Computational
Linguistics, Oct. 2018.

[50] A. Panigrahi, R. Somani, N. Goyal, and P. Netrapalli, “Non-gaussianity
of stochastic gradient noise,” arXiv preprint arXiv:1910.09626, 2019.

[51] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, “Scalable second
order optimization for deep learning,” arXiv preprint arXiv:2002.09018,
2020.

[52] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A com-
prehensive survey on model compression and acceleration,” Artificial
Intelligence Review, vol. 53, pp. 5113–5155, 2020.

[53] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Neural Information Processing Systems, 1989.

[54] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Neural Information Processing
Systems, 1988.

[55] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[56] D. Oktay, J. Ballé, S. Singh, and A. Shrivastava, “Scalable model
compression by entropy penalized reparameterization,” arXiv preprint
arXiv:1906.06624, 2019.

[57] M. Haroush, I. Hubara, E. Hoffer, and D. Soudry, “The knowledge
within: Methods for data-free model compression,” 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8491–8499, 2019.

[58] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[59] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
arXiv: Computer Vision and Pattern Recognition, 2015.

[60] R. Gray, “Vector quantization,” IEEE Assp Magazine, vol. 1, no. 2,
pp. 4–29, 1984.

[61] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

[62] J. Lin, J. Tang, H. Tang, S. Yang, X. Dang, and S. Han, “Awq:
Activation-aware weight quantization for llm compression and accel-
eration,” arXiv preprint arXiv:2306.00978, 2023.

[63] P. Sharma, J. T. Ash, and D. Misra, “The truth is in there: Improving
reasoning in language models with layer-selective rank reduction,”
ArXiv, vol. abs/2312.13558, 2023.

[64] P. Yadav, L. Choshen, C. Raffel, and M. Bansal, “Compeft: Compression
for communicating parameter efficient updates via sparsification and
quantization,” arXiv preprint arXiv:2311.13171, 2023.

[65] A. Aghajanyan, S. Gupta, and L. Zettlemoyer, “Intrinsic dimensionality
explains the effectiveness of language model fine-tuning,” in Proceed-
ings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers) (C. Zong, F. Xia,
W. Li, and R. Navigli, eds.), (Online), pp. 7319–7328, Association for
Computational Linguistics, Aug. 2021.

[66] A. Gueta, E. Venezian, C. Raffel, N. Slonim, Y. Katz, and L. Choshen,
“Knowledge is a region in weight space for fine-tuned language models,”
in Findings of the Association for Computational Linguistics: EMNLP
2023 (H. Bouamor, J. Pino, and K. Bali, eds.), (Singapore), pp. 1350–
1370, Association for Computational Linguistics, Dec. 2023.

[67] G. Ilharco, M. T. Ribeiro, M. Wortsman, S. Gururangan, L. Schmidt,
H. Hajishirzi, and A. Farhadi, “Editing models with task arithmetic,”
arXiv preprint arXiv:2212.04089, 2022.

[68] L. Choshen, E. Venezian, N. Slonim, and Y. Katz, “Fusing finetuned
models for better pretraining,” ArXiv, vol. abs/2204.03044, 2022.

[69] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes,
A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, and
L. Schmidt, “Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time,” 2022.

[70] M. Matena and C. Raffel, “Merging models with fisher-weighted aver-
aging,” arXiv preprint arXiv:2111.09832, 2021.

[71] P. Yadav, D. Tam, L. Choshen, C. Raffel, and M. Bansal, “Ties-
merging: Resolving interference when merging models,” in Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

[72] Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and
T. Zhao, “Adaptive budget allocation for parameter-efficient fine-tuning,”
arXiv preprint arXiv:2303.10512, 2023.

[73] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” arXiv preprint arXiv:2305.14314,
2023.

[74] A. Sabne, “Xla: Compiling machine learning for peak performance,”
2020.

[75] P. Wu, “Pytorch 2.0: The journey to bringing compiler technologies to
the core of pytorch (keynote),” in Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization, pp. 1–
1, 2023.

[76] S. Tyagi and M. Swany, “Gravac: Adaptive compression for
communication-efficient distributed dl training,” in 2023 IEEE 16th
International Conference on Cloud Computing (CLOUD), pp. 319–329,
IEEE, 2023.

[77] J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian,
“Galore: Memory-efficient llm training by gradient low-rank projection,”
arXiv preprint arXiv:2403.03507, 2024.

[78] A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and
I. Sutskever, “Better language models and their implications,” OpenAI
blog, vol. 1, no. 2, 2019.

[79] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Un-
supervised Pre-Training for Speech Recognition,” in Proc. Interspeech
2019, pp. 3465–3469, 2019.

[80] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[81] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning, pp. 8748–8763, PMLR, 2021.

[82] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojo-
caru, M. Debbah, É. Goffinet, D. Hesslow, J. Launay, Q. Malartic,
et al., “The falcon series of open language models,” arXiv preprint
arXiv:2311.16867, 2023.

[83] B. Workshop, T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić,
D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon, et al., “Bloom:
A 176b-parameter open-access multilingual language model,” arXiv
preprint arXiv:2211.05100, 2022.

[84] X. Geng and H. Liu, “Openllama: An open reproduction of llama,” May
2023.

[85] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[86] H. Ivison, Y. Wang, V. Pyatkin, N. Lambert, M. Peters, P. Dasigi, J. Jang,
D. Wadden, N. A. Smith, I. Beltagy, and H. Hajishirzi, “Camels in a
changing climate: Enhancing lm adaptation with tulu 2,” 2023.

APPENDIX

A. Models name Downloaded from Hugging Face

The main models used are: For FP32 Models: Bert [12],
GPT2 [78], wav2Vec [79], RoBERTa [80] and fine tuned

12

RoBERTa on the Rotten Tomato dataset [37], XLM-Roberta,
CLIP [81], and T5-base [38].

For BF16 Models: Falcon-7B [82], Bloom [83] and
OpenBuddy/OPENLLAMA (3B-BF16, [84]) and Mistral [6].
For FP16 Models: llama2-13B [85] Tulu-7B [86] and
argilla/CapybaraHermes-2.5-Mistral-7B [6] and Stable-Video-
Diffusion.

We provide a full list of the exact model names used as they
appear in Hugging Face hub for complete reproducibility.

• jonatasgrosman/wav2vec2-large-xlsr-53-english
• google-bert/bert-base-uncased
• openai-community/gpt2
• runwayml/stable-diffusion-v1-5
• becausecurious/stable-video-diffusion-img2vid-fp16
• argilla/CapybaraHermes-2.5-Mistral-7B
• FacebookAI/roberta-base
• FacebookAI/xlm-roberta-base
• openai/clip-vit-large-patch14
• google-t5/t5-base
• TheBloke/Llama-2-13B-Chat-fp16
• TheBloke/tulu-7B-fp16
• tiiuae/falcon-7b
• bigscience/bloom
• OpenBuddy/openbuddy-openllama-3b-v10-bf16
• mistralai/Mistral-7B-v0.1

B. Quantized Models

We provide the names of the Quantized Models used as they
appear in Hugging Face hub for complete reproducibility. We
discuss compressing those in section VI.

• TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ
• TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ
• TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ
• TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ
• TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ
• TheBloke/CapybaraHermes-2.5-Mistral-7B-AWQ

C. RoBERTa-base model trained on tweets

We provide the names of the models finetuned on twitter
dataset, as they appear on Hugging Face hub for complete
reproducibility. We discuss compressing those in §V-A.

• cardiffnlp/twitter-roberta-base-irony
• cardiffnlp/twitter-roberta-base-offensive
• cardiffnlp/twitter-roberta-base-hate
• cardiffnlp/twitter-roberta-base-mar2020
• cardiffnlp/twitter-roberta-base-jun2020
• cardiffnlp/twitter-roberta-base-sep2020
• cardiffnlp/twitter-roberta-base-dec2020
• cardiffnlp/twitter-roberta-base-mar2021
• cardiffnlp/twitter-roberta-base-jun2021
• cardiffnlp/twitter-roberta-base-sep2021
• cardiffnlp/twitter-roberta-base-dec2021

