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Abstract—The partial-update filter is a Kalman filter modifica-
tion that can accommodate higher nonlinearities and uncertain-
ties than a nominal and Schmidt-Kalman filter. This robustness
enhancement of the partial-update filter is attributed to its
capability to limit the impact of incorrect updates by applying
user-selected static percentages of the nominal Kalman update,
to user-selected states at any time step.

To further extend the partial-update capabilities and appli-
cability, this paper presents two methods for dynamically and
automatically selecting the partial-update percentages based on
nonlinearity metrics of the process and measurement model. By
enabling dynamic update percentages, the filter automatically
leverages situations where higher updates can be applied and
lower updates are deemed suitable. This leads to higher statistical
consistency and accuracy with respect to the nominal Kalman
and static partial-update filters. The superior accuracy and
consistency of the proposed nonlinearity-aware partial-update
methods are shown via a numerical example.

Index Terms—Kalman filter, Schmidt, Robust, Partial-update,
Nonlinearity

I. INTRODUCTION

The extended Kalman filter (EKF) is one of the most
used filtering algorithms for nonlinear state estimation mainly
because it is functional for many systems, straightforward
to implement, and runs online [1]. However, when some
state vector elements are significantly less observable than
others, and the system is highly nonlinear, a conventional
EKF can produce estimate degradation, filter inconsistency,
and even divergence [2] [3]. An immediate, straightforward,
and often effective alternative to ameliorate difficulties caused
by nonlinearities and observability disparities, is to modify the
Kalman filter to turn it into a Schmidt filter [2], [4]–[6]. In
practice, the Schmidt filter is identical to the Kalman filter,
except the Schmidt filter only updates a user-selected part of
the state and the remaining state elements and covariances are
unchanged. In the literature, the Schmidt filter partitions the
state into core and considered (not updated) states. Core states
are often those of primary interest, like position, velocity, and
attitude. The considered states are often identified as those
that, estimated or not, degrade the conventional Kalman filter
estimates; they are typically constant parameters, slow-varying
biases, and/or states with relatively low observability [2]. Al-
though the Schmidt filter does not update the considered states,
the states and associated uncertainties are still considered in
the filtering solution [7].

This work was supported under Air Force contract FA8651-20F-1052.

Even when the Schmidt modification can benefit a Kalman
filter, it constrains it to systems where the considered (non-
estimated) states are constant over the life of the filter run.
A more general Schmidt filter is the partial-update Schmidt
filter [8]. The partial-update technique generalizes the Schmidt
filter, allowing the application of either a nominal (100%), zero
(0%), or a partial-update to any state at any time step. In this
way, the partial-update filter can cope with varying parameters,
drifting biases, and non-constant poorly observable states [8]–
[11].

To use the partial-update filter, one must establish the states
to be partially updated and the updating percentages for each
state. To date, the percentage update can be selected manually
as in [8], [12]–[17], based on the observed simulated or
experimental system trajectories, or automatically selected,
based on the local observability of each partially-updated state
[18]. Although the observability-based method is a method to
appropriate the partial-update percentages online by leveraging
its awareness of the system’s observability fluctuation, it still
depends on the accuracy of the system linearization. In other
words, it entirely relies on the assumption that the magnitude
of high-order effects is minor, and thus the observability met-
rics being used remain within a valid regime. To directly assess
the effect of nonlinearities and complement the observability-
based method from [18], in this paper, we propose two
approaches that directly monitor high-order terms and use
this information to establish the partial-update percentages: a
nonlinearity-aware method and a nonlinear covariance-aware
method. Both nonlinearity-based methods aim to decrease
the partial update when high-order terms are significant and
increase it if high-order terms are not comparable to first-
order terms. Overall, the nonlinearity-aware and nonlinear
covariance-aware methods intend to leverage as much update
information as possible, and to reduce the negative impact of
incorrect updates when the state is in locally highly-nonlinear
regions.

The remainder of this paper is organized as follows. Section
II presents key background information and establishes rele-
vant notation. The specifics of the nonlinearity-aware methods
for dynamic selection of the partial-update percentages are dis-
cussed in Section III. Numerical simulations of both methods
within an extended Kalman filter are presented in Section IV.
Finally, Section V presents the conclusions of this work.
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II. BACKGROUND

A. Kalman filter notation

This section establishes the EKF nomenclature and notation
relevant to the partial-update developments presented in this
paper. This notation is the same used in [19]. Consider the
following discrete nonlinear dynamic system with state vector
xk ∈ Rn, known input uk ∈ Rr, measurement vector ỹk ∈
Rm, process noise wk ∈ Rq , and measurement noise vk ∈
Rm:

xk = f k−1(xk−1,uk−1) + Gk−1wk−1 (1)

ỹk = hk(xk) + vk (2)

wk ∼ N (0,Qk) (3)

vk ∼ N (0,Rk) (4)

Here, wk and vk are zero-mean Gaussian white-
noise processes, with covariances Qk = IE[wkw

T
k ]

and Rk = IE[vkv
T
k ], respectively; the function

h(xk) =
[
h1(xk) h2(xk) . . . hm(xk)

]T
, is the

measurement model function that maps Rn → Rm, and
all of the sub-indices denote the time step. Also, consider the
EKF discrete covariance propagation equation given as

P−
k = Fk−1P

+
k−1F

T
k−1 + Gk−1Qk−1G

T
k−1 (5)

Where P−
k is the prior error covariance, P+

k−1 is the most

recent updated covariance, Gk−1 =
∂ f k−1

∂wk

∣∣∣
IE[wk−1]

is the n×
q matrix mapping the process noise from the vector wk to

the state, and Fk−1 =
∂ f k−1

∂x

∣∣∣
IE[xk−1]

is the process model

Jacobian.
When an observation is available, the measurement update

step is performed through the Kalman gain Kk according to
Equations (6)-(9). Note that the measurement Jacobian at time
k, is denoted by Hk [19]:

Kk = P−
k HT

k (HkP
−
k HT

k + Rk)
−1 (6)

P+
k = (I− KkHk)P

−
k (7)

ŷk = h(x̂−
k , k) (8)

x̂+
k = x̂−

k + Kk(ỹk − ŷk) (9)

where

Hk =
∂hk

∂x

∣∣∣
x̂−
k

(10)

Here the hat notation, i.e., ˆ[ · ], denotes an expected or esti-
mated value. The notations [ · ]+ and [ · ]− refer to posterior
and prior values, respectively. The set of equations (1) to (10),
constitute the extended Kalman filter framework where the
partial-update concepts are applied in this paper.

B. The partial-update implementation

The implementation of the partial-update concept within
the EKF is straightforward. It consists of a weighted sum
of the prior state and covariance estimates (x̂−, P−), with
their corresponding posteriors (x̂+, P+); the element-wise
expression of the partial-update for the state and covariance
estimates, at a given measurement step, is given by [8]

x̂++
i = γix̂

−
i + (1− γi)x̂

+
i (11)

P++
ij = γiγjP

−
ij + (1− γiγj)P

+
ij (12)

γi = 1− βi (13)

or in matrix form as

x++ = Γx̂− + (I − Γ)x̂+ (14)

P++ = Γ(P− − P+)Γ + P+ (15)

Here, the scalars (weights or percentages) βi ∈ [0, 1] in
Equation (13), represent the percentage of the nominal update
to be applied. The product γiγj , and βi, are defined for
i, j = 1, . . . , n, where n is the total number of states in the
filter. If βi = 0, the ith state is not updated; this is equivalent
to using a Schmidt (or consider) filter on the ith state. On
the other hand, if βi = 1, the ith state is updated via a
regular Kalman filter (full) update. Setting βi anywhere in
between applies a partial update. The notation [ · ]++ in the
partial-update equations identifies the state and covariance that
will be used at the next propagation step after a measurement
update has been performed. Last, in the matrix Equation (15),
Γ = diag

[
γ1 . . . γn

]
.

Note that the partial-update expressions may be written
differently, but the one used here facilitates discussion and
mathematical manipulations. Also, note that a partial-update
can be applied to any state. This means that even main or core
states (e.g. attitude, position, velocity) can receive an update
percentage of less than 100 %. In fact, some systems that use
the partial-update concept have shown that it can be beneficial
that core states receive update percentages slightly lower than
100% as it helps to limit the adverse effects that nonlinearities
can exacerbate during an update. Examples of such systems
can be found in [15], [20], and [9].

III. DYNAMIC PARTIAL-UPDATE METHODS

For many low-uncertainty applications, the tolerance of the
EKF to slight mismodelling is sufficient to prevent divergence.
However, suppose the higher-order effects of a system are
significant. In that case, the first-order EKF update becomes
less optimal, and the filter estimates can be quickly degraded
due to the more considerable mismatch between the system
and the filter’s model. Based on this fact, limiting the EKF up-
date when the high-order effects are comparable to first-order
effects seems reasonable. In this spirit, this section proposes
two ways to appropriate the partial-update percentages or β
weights dynamically: the nonlinearity-aware (DNL) and the
covariance nonlinearity-aware (DC) methods.
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A. Nonlinearity-aware based method

The nonlinearity-aware method monitors the Kalman
second-order to first-order terms ratio to determine the partial-
update percentages. The idea of this approach is to limit the
EKF update as this ratio increases. To establish the relationship
between second and first-order terms and the partial-update
weights, consider the equations for the discrete second-order
Kalman filter (EKF2) [3]. For the dynamics and uncertainty
propagation, with EKF2’s variables identified with the sub-
index (2), we have

x̂−
k(2) = f(x̂−

k−1,uk−1, k − 1) +
1

2

n∑
i=1

ϕitr
[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
(16)

P−
k(2) = Fk−1P

+
k−1F

T
k−1 + Gk−1Qk−1G

T
k−1 (17)

Whereas the measurement update equations are given by

x̂+
k(2) = x̂−

k(2) + Kk(2)

[
ỹk − h(x̂−

k(2) , k)
]
− π (18)

π =
1

2
Kk(2)

m∑
i=1

ϕitr
[
Dk,iP

−
k(2)

]
(19)

Dk,i =
∂2hi(xk, k)

∂x2

∣∣∣
x̂−
k(2)

(20)

Kk(2) = P−
k(2)H

T
k (HkP

−
k(2)H

T
k + Rk)

−1 (21)

P+
k(2) = (I − Kk(2)Hk)P

−
k(2) (22)

Here, Dk,i is the Hessian matrix for the ith measurement ele-
ment of h at time k, F and H, the process and measurement
model Jacobian, are defined as before, and ϕi is the single-
entry vector (with a 1 at the ith element) given by,

ϕT
i =

[
0 0 . . . 0 . . . 1 . . . 0

]T
(23)

Next, we establish a relationship between the second-order
EKF2 terms’ influence and the partial-update percentages. To
do so, consider the measurement update from Equation (18)
and the vector π expressed together as

x̂+
k(2) = x̂−

k(2) + Kk(2)

[
ỹk − h(x̂−

k(2) , k)
]

−1

2
Kk(2)

m∑
i=1

ϕitr
[
Dk,iP

−
k(2)

]
(24)

Further, let the prior state, x̂−
k , as defined in Equation (16) be

substituted into the previous equation to form

x̂+
k(2) = f(x̂−

k−1,uk−1, k − 1) +
1

2

n∑
i=1

ϕitr
[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
+

Kk(2)

[
ỹk − h(x̂−

k(2) , k)
]
− 1

2
Kk(2)

m∑
i=1

ϕitr
[
Dk,iP

−
k(2)

]
(25)

By reorganizing the terms the posterior estimate, x̂+
k(2), can

be written as,

x̂+
k(2) = f(x̂−

k−1,uk−1, k − 1)

+Kk(2)

[
ỹk − h(x̂−

k(2) , k)
]
+ Y (26)

where

Y =
1

2

{
n∑

i=1

ϕitr
[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
− Kk(2)

m∑
i=1

ϕitr
[
Dk,iP

−
k(2)

]}
(27)

Recalling the partial-update matrix expression for the state and
using Equation (9),

x++
k = x̂−

k + (I − Γ)Kk(ỹk − ŷk) (28)

and expressing it in terms of the function dynamics, measure-
ment function (for the same assumed system in the EKF2),
and expanding it, leads to

x++
k = x̂−

k + (I − Γ)Kk(ỹk − ŷk)

= x̂−
k + Kk(ỹk − ŷk)− ΓKk(ỹk − ŷk)

= f(x̂−
k−1,uk−1, k − 1) + Kk(ỹk − ŷk)− ΓKk(ỹk − ŷk)

= f(x̂−
k−1,uk−1, k − 1) + Kk

[
ỹk − h(x̂−

k k)
]

−
ΓKk

[
ỹk − h(x̂−

k , k)
]

(29)

Next, it is assumed that the partial-update filter compensates
the state and covariance estimates sufficiently to maintain them
close to the second-order state and covariance estimates. That
is xk(2) ≈ xk, Kk(2) ≈ Kk, Pk(2) ≈ Pk. Considering
this, a direct term-by-term comparison of the partial-update
expression from Equation (29) and Equation (26), reveals that
the term with the partial-update weights,

−ΓZ := −ΓKk

[
ỹk − h(x̂−

k , k)
]

(30)

can be directly related to second-order terms of the EKF2 as
follows:

−ΓKk

[
ỹk − h(x̂−

k , k)
]
∝

1

2

{
n∑

i=1

ϕitr
[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
− Kk

m∑
i=1

ϕitr
[
Dk,iP

−
k

]}
(31)

or
−ΓKk

[
ỹk − h(x̂−

k , k)
]
∝ Y (32)

Note that in relation (32), the sub-index (2) is dropped due
to the assumption that the partial-update produces estimates
close to those of the EKF2. Also note that this expression
follows the previously discussed idea of selecting γi ∈ [0, 1],
according to the second-order terms influence since it suggests
that:

• Γ should be set with high values if the second-order
effects, Y , are large.

• If Y is small, Γ is to be set with small values.
Noticing that both left and right terms of expression (31) are
n × 1 vectors, individual relationships between second-order
terms and the jth partial-update weights can be established as,

Γjj ∝
1
2

{∑n
i=1 ϕitr

[
∂2fi
∂x2

∣∣∣
x̂+
k−1

P+
k−1

]
− Kk

∑m
i=1 ϕitr

[
Dk,iP

−
k

]}
j

−Kk

[
ỹk − h(x̂−

k , k)
]
j

(33)

3



or alternatively using the definition of Y and Z,

Γjj ∝
Yj

Zj
(34)

Finally, introducing a scale factor fr,j to write the proportional
relationship as an equality, and only considering the absolute
values of Y and Z, gives rise to

Γjj = fr,j
|Yj |
|Zj |

(35)

which, in terms of the diagonal matrix β =
diag

[
Γ11 . . . Γnn

]
, reads

βjj = 1− fr,j
|Yj |
|Zj |

(36)

Note that, if needed, the scaling term fr,j
|Yj |
|Zj | is manually

restricted to the domain fr,j
|Yj |
|Zj | ∈

[
0 1

]
so that βjj ∈[

0 1
]
. If Zj equals zero (because the sensor and the expected

measurements are the same, or the Kalman gain is zero), Γjj

is set to 1.
In Equation (36), the scale factor fr,j can also act as a

variable that adjusts the impact of the nonlinearity metric to
the problem in question. As per experiments done with this
partial-update approach, an adaptive scale factor fr,j (for the
jth partially updated state) involving the measurement residual
and the state uncertainty covariance was found conveniently
defined as

fr,j =
σk,j

σo,j

tr(HkPkH
T
k + Rk)

tr(Rk)
(37)

The reason for including the ratio of the traces is to limit
the second-order terms’ negative effects commensurate to the
current system uncertainty. To account for the impact of initial
filter uncertainties, the ratio of the standard deviation at time
k for the jth state, σk,j =

√
(Pjj)k, to the corresponding

initial value, σo,j , is also included in fr,j .

B. Nonlinear Covariance-aware partial-update

This section presents an alternative way of selecting the
partial-update weights online, which we called nonlinear dy-
namic covariance-aware partial-update, DC for short. Parallel-
ing the previous method that monitors the EKF2 second-order
effects, the method proposed in this section monitors Kalman
second-order covariance terms. As before, the aim is that the
partial update is reduced when the high-order to first-order
terms ratio is significant and increased when the first-order
terms are dominant.

To obtain the expressions for the β selection using the
covariance-aware method, first, consider the covariance mea-
surement update expression for the second-order Kalman filter
[3],

P+
k(2) = P−

k(2)−P−
k(2)H

T
k (HkP

−
k(2)H

T
k+Rk+Λk)

−1HkP
−
k(2)

(38)

Next, to relate the partial-update percentages, Γ, to the second-
order covariance terms, the expanded covariance partial-update
expression for (15) is obtained

Pk
++ = P+

k + ΓP−
k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ

(39)
where Equations (6) and (7) were substituted into Equation
(15). Further, Equation (39) can be written as a function of
the prior state covariance as,

Pk
++ = P−

k − KkHkP
−
k +

ΓP−
k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ (40)

and replacing the Kalman gain with

Kk = P−
k Hk(HkP

−
k HT

k + R)−1 (41)

leads to

Pk
++ = P−

k − P−
k Hk(HkP

−
k HT

k + R)−1HkP
−
k +

ΓP−
k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ (42)

Before attempting to relate the posterior covariance from
Equation (42) to (38), two more manipulations are performed.
First, Equation (38) is re-written so that the residual covari-
ance term (HkP

−
k HT

k + Rk)
−1 appears by itself. This is

accomplished by applying the matrix inversion lemma to the
parenthetical of Equation (38) [19]:

(HkP
−
k HT

k + Rk +Λk)
−1 = (43)

(HkP
−
k HT

k + Rk)
−1 −

(HkP
−
k HT

k + Rk)
−1Λk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1 ∗

(HkP
−
k HT

k + Rk)
−1

Second, this expression is substituted into the EKF2 update
covariance of Equation (38), which results in

Pk(2)
+ = (44)

P−
k(2) − P−

k(2)Hk(HkP
−
k(2)H

T
k + R)−1HkP

−
k(2) +

P−
k(2)H

T
k (HkP

−
k(2)H

T
k + Rk)

−1Λk[(HkP
−
k(2)H

T
k + Rk)

−1Λk + I]−1 ∗

(HkP
−
k(2)H

T
k + Rk)

−1HkP
−
k(2)

Now, by doing a term-by-term comparison of the partial-
update expression of Equation (42), and the EKF2 update for
the error state covariance of Equation (44), the following rela-
tionship between second-order covariance effects and partial-
update terms can be established,

ΓP−
k HT

k (HkP
−
k HT

k + Rk)
−1HkP

−
k Γ ∼ (45)

P−
k HT

k (HkP
−
k HT

k + Rk)
−1Λk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1 ∗

(HkP
−
k HT

k + Rk)
−1HkP

−

where the symbol ∼, is to indicate that the terms are related,
and the assumption that the partial-update estimates are similar
to those of the EKF2 has been used. For the sake of clarity,
Equation (45) can be compactly written as

ΓδP−
k Γ ∼ KkΛk[(HkP

−
k HT

k + Rk)
−1Λk + I]−1Kk

T

(46)
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where δP−
k = P−

k HT
k (HkP

−
k HT

k + Rk)
−1HkP

−
k . To fur-

ther simplify relation (46), the matrix on the right is condensed
into a matrix called N; now Equation (46) reads

ΓδP−
k Γ ∼ Nk (47)

Recalling that the desire is to select Γjj proportional to
second-order effects, it is proposed to select the Γjj values
by a straight element-by-element comparison of the diagonal
elements of matrix ΓδP−

k Γ and N at any time k. This leads
to the proportionality relationship

δP−
jjγ

2
j ∝ Njj (48)

or since δP− and N are positive semi-definite,

γj ∝
√

Njj

δP−
jj

(49)

As for the nonlinearity-aware method, a scale factor fc,j is
introduced to account for measurement residual covariance
effects as,

Γjj = γj = fc,j

√
Njj

δP−
jj

(50)

or equivalently

βjj = βj = 1− fc,j

√
Njj

δP−
jj

(51)

The scale factor fc,j used for the covariance-aware method is
the same as the one used for the nonlinearity-aware method,

fc,i =
σk,i

σo,i

tr(HkPkH
T
k + Rk)

tr(Rk)
(52)

Note that the value for βi is constrained to βi ∈
[
0 1

]
.

IV. NUMERICAL EXAMPLE: THE RE-ENTRY FALLING BODY

The following filter example estimates the altitude, x1 (in
meters), vertical velocity, x2 (in meters per second), and
constant ballistic parameter, x3 (with units of 1/meter), of a
body re-entering the Earth’s atmosphere from high altitude and
velocity. The discretized nonlinear dynamics, adopted from
[21], are given by

x1(k) = x1(k−1) + x2(k−1)∆t+ w1 (53a)

x2(k) = x2(k−1) + (e
−x1(k−1)

kp x2
2(k−1)x3(k−1) − g)∆t+ w2

(53b)
x3(k) = x3(k−1) + w3 (53c)

For this example, the available observations are range mea-
surements h, which are modeled via

h(x1) =
√
d2 + (x1 − h0)2 + vk (54)

Here, ∆t is the integration step, kp = 6.1× 103 m relates the
air density with the altitude, g = 9.81m/s2 is the acceleration
due to gravity, d = 3 × 104 m is the horizontal distance
from the measuring device to the vertical line traced by the

falling body, h0 = 3× 104 m is the altitude of the measuring
device from ground level, and vk is zero-mean Gaussian white
noise associated with the measurement. The described falling
body is pictured in Figure 1. For all simulations presented
in this section, the true initial conditions were set to x0 =[
100000 m −5000 m/s 0.003 1/m

]T
. Initial 1σ uncertain-

ties were set to σ =
[
10000 500 0.03

]
, with appropriate

units, and the measurement noise was set to R = 1000 m2.
As in [21], the process noise is set to zero to avoid masking
linearization errors; this is, w = [w1, w2, w3]

T = 0, and
Q = IE[wwT] = 0. Note that the filter initial uncertainties
referred to as 1σ and its multiples are intended to exercise
the filter’s capabilities as presented in what follows. Also note
that for this example, the partial update is only applied to
the ballistic coefficient because it is the state that introduces
difficulties when estimated via a conventional EKF.

Fig. 1. Falling body diagram.

A. Simulation results

In Figure 2, the states’ error histories for the EKF and the
static partial-update are shown for a single typical run. The
intention of this figure is to demonstrate that at the exercised
(1.1σ) level of uncertainty, the EKF is already inconsistent. On
the other hand, the partial-update filter that uses a manually
tuned (static) update on the ballistic coefficient is consistent as
all three states’ errors remained within their 3σ bounds. Note
that for initial errors smaller than 1σ, the EKF was observed
to be consistent.

The results for the nonlinearity-aware and nonlinear
covariance-aware partial-update filters and static partial-
update, for the same initial conditions used in the run of
Figure 2, are plotted in Figure 3. There are two main obser-
vations from this figure. First, the nonlinearity-aware methods
achieve performance at the level of the finely and manually
tuned partial-update filter. And second, the nonlinearity-aware
method is able to achieve the lowest uncertainty among the

5



Fig. 2. Partial-update and nominal EKF filters. An initial error of 1.1σ. Partial-
update used a β = diag

[
1 1 0.75

]
. Conventional EKF is not consistent.

Fig. 3. Dynamic methods (DNL and DC), and the static partial-update using
β = diag

[
1 1 0.75

]
. An initial error of 1.1σ. All filters state errors are

consistent.

three methods while maintaining its state errors within their
corresponding 3σ bounds. The nonlinearity-aware method
achieves the lowest overall uncertainty because it is able to
leverage better occasions where a full update is suitable. The
covariance-aware method, although it also acts opportunis-
tically when updating, it applies more conservative updates
overall. Finally, the static partial-update is observed to achieve
more confident bounds than the covariance-aware method,
even when it does not monitor nonlinearities. However, the
covariance-aware technique dynamically selects the partial-
update weights.

Figure 4 displays the β weight applied to the ballistic coeffi-
cient for the run shown in Figure 3. From this β’s histories, one

0 10 20 30

Time (s)

0

0.2

0.4

0.6

0.8

1

DNL

DC

Fig. 4. Partial-update percentages (β) histories for the nonlinearity and
covariance-aware methods. Initial uncertainty 1.1σ.

can confirm that the covariance-aware method applies more
conservative updates in contrast with the nonlinearity-aware
method. Moreover, it can be seen that both dynamic methods
are able to detect the high nonlinearities at time t ≈ 11 secs as
both lowered the update percentage for the ballistic coefficient.

A second experiment used an initial condition of 1.5σ to
exercise the filter further. The results of a single run using
initial errors of 1.5σ, are shown in Figure 5. These results are
similar to those obtained for a lower initial error. Although for
this specific run, the covariance-aware method incurs larger
errors than the other two approaches, it still manages the
initial uncertainties and nonlinearities at the level of a finely-
tuned static partial update. The corresponding partial-update
percentages (β) for the nonlinearity-based methods are shown
in Figure 6.

Note from Figure 4 and Figure 6, that the filter percentage
selection methods capture two key instants where β is to be
significantly varied: at time t = 1s when the first measurement
is assimilated, and at time t = 11s after the filter regains
information (after losing observability due to range sensor and
body alignment).

Although the nonlinearity-based methods perform at the
level of the static partial-update approach, one should con-
sider that when using the nonlinearity-based methods tuning
or experimentation with the partial-update percentage is not
required.

Additionally, 1000 Monte Carlo runs were executed to show
that the nonlinearity-based techniques’ performance is not
specific to a single random draw. The Monte Carlo runs for
the nonlinearity-aware and covariance-aware are displayed in
Figure 7 and Figure 8, respectively. For completeness, Monte
Carlo runs for the static partial-update are included in Figure
9.

In Figures 7, 8, and 9, single filter runs are shown in
thin-colored lines, filter-estimated standard deviation are in a
solid thick line, and the actual standard deviation is the thick

6



Fig. 5. Dynamic methods (DNL and DC), and the static partial-update using
β = diag

[
1 1 0.75

]
. An initial error of 1.5σ. All filters state errors are

consistent.
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Fig. 6. Partial-update percentages (β) histories for the nonlinearity and
covariance aware methods. Initial uncertainty 1.5σ.

dashed line. All three filters used the same initial seed and
uncertainties indicated in the problem description. From these
figures, it is apparent that both nonlinearity-aware methods in-
cur less error than the static partial-update filter. Furthermore,
the nonlinearity-aware filters appear more consistent than the
partial-update filter as their estimated uncertainties match the
actual sampled uncertainty better. It is worth noting, that even
though the consistency of the nonlinearity-aware filters is not
perfect, it should be recalled that the filter is still a linear filter
and that the conventional EKF was not functional under the
presented scenario.

V. CONCLUSION

Two methods for selecting the partial-update filter percent-
ages were presented. Both methods were based on directly

Fig. 7. 1000 Monte Carlo runs of the nonlinearity-aware method along with
the actual ±3σ bounds from all runs (dashed line) and from the filter (solid
line).

Fig. 8. 1000 Monte Carlo runs of the covariance-aware method along with
the actual ±3σ bounds from all runs (dashed line) and from the filter (solid
line).

monitoring nonlinearity metrics to appropriate update percent-
ages such that the Kalman update is limited when second-
order terms are comparable to first-order terms. The proposed
nonlinearity-aware techniques did not require manual tuning.
However, they achieved comparable performance to a finely-
tuned static partial-update. This tuning-free characteristic can
be advantageous, especially when the size of the state vector
is large. Furthermore, simulated Monte Carlo runs showed
that filters using the nonlinearity-aware methods incurred in
less estimation error and had more appropriate covariances
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Fig. 9. 1000 Monte Carlo runs of the static partial-update filter with β =
diag

[
1 1 0.75

]
along with the actual ±3σ bounds from all runs (dashed

line) and from the filter (solid line).

than the static partial-update filter. This was the case because
the nonlinearity-aware methods are capable of limiting their
updates on highly-nonlinear regimes, where the Kalman filter
equations sub-optimality is exacerbated. Finally, it is worth
mentioning that the proposed metrics and methods for online
partial-update weights (β) selection mostly use information
computed within the Kalman filter. Therefore, they do not
over-specialize the filter, retain the EKF structure, and fa-
cilitate their incorporation into any standard Kalman filter
implementation.
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