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Abstract—The stochastic nature of solar energy generation
poses a challenge for grid operators, especially with higher pene-
tration of solar-based renewables in the grid. This paper proposes
an attention-based temporal fusion transformer (TFT) model for
short-term (an hour ahead) photovoltaic (PV) power forecasting
using available geographic data such as solar irradiation, temper-
ature, and statistical features extracted from historical PV data.
TFT utilizes a self-attention layer for long-term dependencies
where recurrent networks are used for local processing. The
model selects relevant features through a series of gating layers
to achieve high performance for multi-horizon forecasting. The
temporal fusion transformer model also provides interpretable
insights into the temporal dynamics of different features. A
real-world PV dataset has been utilized to compare the model
performance with some other state-of-the-art forecasting models.

Index Terms—PV forecasting, temporal fusion transformer,
interpretable machine learning, multi-horizon forecasting.

I. INTRODUCTION

Solar energy is the most popular and fastest-growing renew-
able resource to replace traditional fuel-based power plants.
International Energy Agency (IEA) predicts the total global
photovoltaic (PV) penetration will cross 1700 GW by 2030 [1].
Although solar is an infinite replenishable source of energy,
the highly stochastic and unpredictable nature of solar makes
optimal and reliable planning of utilities a challenging task.
This issue is more relevant in recent times, as PV penetration
in the power grid is expected to be doubled in the upcoming
decade.

Accurate forecasting of the generation of PV plants is
essential for the utilities as the deficit between demand and
solar generation must be compensated with the rest of the
energy sources. Especially, short-term accurate forecasting of
PV output is a prerequisite for a renewable-dependent grid.
PV forecasting depends directly on meteorological and geo-
graphical characteristics like solar irradiation, direct normal
radiation, diffuse horizontal radiation, and global horizontal
radiation. Researchers have used different methods to forecast
the generation of solar plants and these methods can be
divided into three major categories: statistical models, machine
learning (ML) based models, and hybrid models. Researchers
have utilized different regression models to forecast PV output
by developing mathematical correlations among variables. The

most popular among these methods is auto-regressive inte-
grated and moving average (ARIMA) [2]. However, ARIMA
does not adapt well to the non-stationary behavior of PV
output. To compensate for this issue, an updated version
including seasonality named seasonal auto-regressive inte-
grated moving average (SARMIA) [3] and auto-regressive
integrated and moving average with explanatory variables
(ARIMAX) were developed by the researchers. XGBoost has
shown impressive performances in pv forecasting and has been
extensively used along with feature engineering by researchers
[4]. The researchers in [4] presented XGBoost and feature
engineering-based PV forecasting methods for a microgrid
system with solar energy. Different empirical and Markov
chain-based models have also been utilized by researchers to
improve the accuracy of solar forecasting [5]. Recently, time
series forecasting based on artificial intelligence (AI) based
models has attained popularity due to higher accuracy and
ease of implementation. Most of the AI/ML techniques use
numerical weather prediction (NWP) as feature input for the
algorithms. A hierarchical approach to achieve intraday PV
forecast based on artificial neural network (ANN) and support
vector regression (SVR) based model was presented in [6].
Authors in [7] presented long short-term memory (LSTM)
based PV prediction using meteorological information and
achieved a reduction of error rate up to 11.8% compared
to convolutional neural network. The hybrid model can be
defined as a combination of different statistical and/or ML-
based models. Authors in [8] presented a hybrid LSTM and
deep neural network (DNN) to predict multi-horizon pv output
based on wavelet decomposition of solar data. Researchers
used deep reinforcement learning and LSTM-based load and
PV forecasting for aiding load and electrical vehicle (EV)
dispatch [9]–[11]. Artificial recurrent neural networks, LSTM,
and an auto-encoder (AE) based model were utilized by [12]
to forecast the output power from 21 PV plants. Authors in
[13] combined autoencoder-LSTM with persistence model to
predict the day-ahead solar output. Due to the several layers
required to increase the forecasting system’s accuracy, this
approach takes more time for training and testing. For fields
connected to the PV grid with tracker facilities, LSTM with
AE has a high error rate. However, it does not require the
selectivity of necessary features. One of the major shortcom-



ings of the ML models is that they are essentially black
box models and the feature importance or explainability of
results can not be comprehended. Recently attention-based
mechanism proposed in [14] has gained popularity especially,
in natural language processing. The transformer-based models
have shown improved performance for PV forecasting [15],
[16]. Authors in [17] presented temporal fusion transformer
(TFT) based multi-horizon forecasting with improved perfor-
mance. The multivariate, multi-horizon forecasting capability
and feature importance indicator make this model a great fit
for the PV forecasting task. Accurate hour-ahead predictions
can be particularly useful for tasks like optimal load dispatch,
energy management, and scheduling electric vehicle (EV)
charging [18]. This paper utilizes the TFT architecture to
forecast hour-ahead PV output based on meteorological data,
and statistical features of PV time series data. The major
contributions of this paper are:

1) Develop a temporal fusion transformer-based PV fore-
casting method based on weather data and statistical
features from PV time series data from a real-world PV
plant.

2) Present an analysis of feature importance to indicate the
interpretability of the model.

3) Compare with existing popular methods to highlight the
efficacy of the proposed attention-based TFT model.

The remainder of the paper is organized as follows. Section II
presents the temporal fusion transformer model architecture.
Section III discusses the proposed forecasting methodology.
Section IV shows the forecasting performance of the proposed
model. Finally, section V concludes the paper.

II. TEMPORAL FUSION TRANSFORMER MODEL
ARCHITECTURE

The TFT utilizes LSTM models combined with attention
head mechanism [17]. Fig. 1 presents a simplified version of
the temporal fusion transformer model architecture. The model
uses static covariate encoder outputs as context vectors to be
used in the later part of the architecture, a gating mechanism to
isolate less important features, an LSTM layer for processing
observed inputs locally, and a temporal self-attention decoder
for learning long-term dependencies.

Let in a time series data, si ∈ Rmx are static variables,
xi.t ∈ Rmx are inputs, and yi.t ∈ Rmx are target outputs in
time step t ∈ [0, Ti]. The time-independent inputs are observed
inputs zi.t ∈ Rmx , and already known inputs xi.t ∈ Rmx . The
forecast thus can be expressed as :

ŷi(q, t, τ) = fq(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t, si) (1)

Here, ŷi(q, t, τ) is the prediction output for the q-th sample
quantile with τ step ahead forecasting. The TFT architecture
can be divided into the following main components as dis-
cussed below.

1) Gating mechanisms: This is a Gated Residual Network
(GRN) block that serves as a filtering mechanism for less
important features. This is especially helpful for datasets with
large input features where not all features may have significant

Fig. 1: Temporal fusion transformer model architecture

contributions to the forecasted output or contain noisy feature
sets which can worsen the output. Let a be the primary input
to GRN and c be an optional context vector. Then the GRN
layer is as follows:

GRNω(a, c) = LayerNorm(a+GLUω(η1)) (2)

Where,
η1 =W1,ωη2 + b1,ω (3)

η2 = ELU(W2,ωa+ E3.ωC + b2,ω) (4)

This GLU layer controls GRN contribution to the original
input a and may skip the layer entirely if GLU outputs are
close to 0.

2) Variable selection networks: This layer gives weight to
the input features based on their variable importance. The
transformed input, ζt is passed through a GRN and then to
a softmax layer.

vxt = softmax(GRNvx(ζt, cs) (5)

vxt is a set of weights corresponding to the features and cs is
obtained from static covariate encoder. Finally, the processed
features are weighted by their corresponding variable selection
weights and combined as:

ζ̄t =

mx∑
j=1

vjxtζ
−j
t (6)



3) Static covariant networks: To utilize static metadata,
separate GRN encoders are used to produce four context
vectors, temporal variable selection, cs, local processing of
temporal features, cc, ch, and enriching temporal features with
static information ce.

4) Multi-head attention mechanism: The TFT employs an
attention mechanism to learn long-term relationships from the
time series data. Let, the relationship between keys K ∈
RN×dattn and queries Q ∈ RN×dattn is described by attention
mechanism values V ∈ RN×dv as below:

attention(Q,K, V ) = A(Q,K)V (7)

Here, A() is a normalization function. The multi-head attention
layer is developed by employing different heads for different
representation subspaces. In TFT, this multi-head attention is
modified to share values in each head and can be expressed
as :

IMH(Q,K, V ) = H̃WH (8)

Here, IMH() is interpretable multi-head attention function
and H̃ is expressed as

H̃ = Ã(Q,K)VWV (9)

where, WV ∈ Rdmodel×dV are shared weights across all heads.
5) Temporal fusion decoder: A sequence of LSTM

encoder-decoder layers is employed to handle the anoma-
lies or change points and feed ζt−k:t to the encoder and
ζt+1:t+τmax

to the decoder. This yields uniform temporal
features, ϕ(t, n) ∈ ϕ(t,−k)....ϕ(t, τmax), and serves as the
input to the decoder. Context vectors cc, ch from the static
covariate encoders are used to initialize the cell and hidden
state of the first LSTM in the layer.

6) Static enrichment layer: To emphasize the influence of
static covariates on temporal dynamics, a static enrichment
layer is introduced. The static enrichment layer can be ex-
pressed as:

θt,n = GRNθ(ϕ̃(t, n), ce) (10)

Here, ce is a context vector from the static covariant encoder,
and the weights from GRNθ are shared across the layer.

7) Temporal self-attention layer: After the static enrich-
ment layer, a self-attention layer is employed. First, all static
temporal features are grouped together and multi-head atten-
tion is applied at each forecast time. To facilitate the training
process, an additional gating layer is applied:

δ(t, n) = LayerNorm(θ(t, n) +GLUδ(β(t, n))) (11)

This is then passed through additional non-linear processing
through GRNs:

ψ(t, n) = GRNψ(δ(t, n)) (12)

The weights from GRNψ are shared across the entire layer.

8) Loss function: The loss function expressed by (13) is
minimized by the TFT model during the training process.

L(Ω,W ) =
∑
yt∈Ω

∑
q∈Q

∑
τ=1

QL(yt, ỹ(q, t− τ, τ), q)

Mτmax
(13)

Here, Ω is the training data sample domain, W represents the
weights of TFT, and Q is the set of output quartiles.

III. METHODOLOGY

A. Data preprocessing

The temporal fusion transformer model has been tested with
real-world solar plant data from [19]. The data contains 15
min granular solar data generation for 34 days (May 15- June
17) from one PV plant in India. Meteorological data such
as temperature (◦C), irradiation (kWh/m2), etc. are collected
from station weather sensors. Plant 1 has a total of 23 inverters
and the summation of these inverters give the total power
generation of the plant. Fig. 2 shows AC power output from
inverter 1 and irradiation data for the same period. We can see
there is a high correlation between these two fields, increasing
irradiation produces more power from the PV cells. The final
AC power output also depends on the temperature and different
inverter efficiency. The last 3 days from the dataset have been
utilized as a testing data set (forecasting horizon) and the rest
data is divided into 80:20 as training and validation datasets.
The data was curated for any missing values. One hot encoding
was applied to the inverter id features set. Apart from the
time series features such as day of the month, and hour of the
day, some statistical features including daily average, hourly
average, etc were added.

Fig. 2: PV output vs Irradiation

B. Temporal fusion transformer implementation

The temporal fusion transformer model excels other ML
models as it supports different types of variables: time-varying
known (date, day of week, month), time-varying unknown
(irradiation, temperature), time-invariant real, time-invariant



(a) Inverter 1 (b) Inverter 2

(c) Inverter 3 (d) Inverter 4

Fig. 3: Three-day prediction of solar output (kW) with temporal fusion transformer

categorical (inverter id). The attention mechanism allows the
model to select the most important variables across the various
time series feature sets through attention weights which help
to improve forecasting accuracy. The model has been imple-
mented on a computer with a 12th Gen Core i7-1255U pro-
cessor, 32GB ram, and an NVIDIA T550 graphics card. The
model was implemented with Pytorch, and Pytorch optimize
hyperparameter functionality was used to find the best values.
The training time was about 42 minutes with the selected
hyperparameters. Table I shows the hyperparameters used for
the model where hidden size represents the dimensionality
or size of the hidden states, and hidden continuous size
refers to the dimensionality of the hidden continuous features.
Attention head is selected based on the size of the dataset and
dropout typically varies between 0.1 and 0.3. Among all the
hyperparameters, hidden size, and learning rate are the most
critical parameters.

IV. FORECASTING PERFORMANCE EVALUATION

The three-day PV forecasted output from four different
inverters out of 23 inverters using the proposed model is shown
in Fig. 3. The gray lines in each figure represent the attention
variance of the model during the training phase. The TFT
shows exemplary performance for all different inverter outputs,

TABLE I: Hyperparameter for temporal fusion transformer
network

Model Parameter Value
Hidden size 103

Hidden continuous size 71
Attention head size 2

Dropout 0.17
Learning rate 0.089

which underlines its robustness for varying datasets. Fig. 4
shows the PV forecast comparison between LSTM and TFT
for hour-ahead prediction over a day. It can be easily seen
from the figure that TFT more closely matches the actual data
than LSTM.

In order to properly evaluate the performance of the pro-
posed method four different performance metrics are selected.
They are mean square error (MSE), mean absolute percentage
error (MAPE), mean absolute error (MAE), and coefficient of
determination (R2). The equations of the metrics are provided
below.

MAE =
1
n

∑n
i=1(p̂i − pi)

n
(14)
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Fig. 4: PV output comparison between LSTM and Temporal
Fusion Transformer for a day.

MSE =
1

n

n∑
i=1

(pi − p̂i)
2 (15)

MAPE =
1

n

n∑
i=1

| pi − p̂i |
c

(16)

R2 = 1−
∑n
i=1(pi − p̂i)

2∑n
i=1(pi − p̄i)2

(17)

Here, n is the number of samples, p̂i is the predicted
value, pi is the actual value, and c is the capacity of the
power plant. The MAE score, also known as Mean Absolute
Error, calculates the average absolute deviation between the
predicted values and the actual values. A smaller MAE implies
a superior performance of the model. The MSE score, which
stands for Mean Squared Error, computes the average of
the squared differences between the predicted values and the
actual values. MAPE calculates the average of the absolute
percentage errors between actual values and predictions. Sim-
ilar to the MAE, a lower MSE and MAPE score suggest better
model performance. The R2 score quantifies the percentage of
the dependent variable’s variability that can be accounted for
by the independent variables. The close the value of R2 is
to 1, the better the model’s performance. A comparison study
for Plant 1 is performed with three other methods: LSTM,
ARIMA, and Neural Prophet [20]. All metrics have been
calculated based on the test samples. Table II summarizes these
performance metrics for all the models. The proposed TFT
model outperforms all the other models for all performance
evaluation metrics.

TABLE II: Performance comparison of the proposed model

Model Name MSE MAPE MAE R2

ARIMA 24.25 0.78 28.23 0.89
LSTM 34.55 2.07 24.30 0.82

Neural Prophet 26.52 0.65 18.12 0.95
TFT 26.21 0.11 13.00 0.99

Finally, an analysis has been performed to find interpretable
insights into temporal dynamics. Fig. 5a shows the develop-
ment of the attention mechanism with time for the model. Fig.
5b, and 5c show the variable importance of encoder features
and static variables respectively. From the figures, it can be
found that irradiation is the most important feature in the
encoder feature set, whereas inverter id is the most important
static variable. These observances are aligned with physical
significance as irradiation, the hour of the day is directly
related to the PV output power and inverter efficiency plays a
key role in the amount of AC power generated.

(a) Attention variance with time

(b) Encoder feature importance

(c) Static variable importance

Fig. 5: Feature variable importance and attention variance

V. CONCLUSION

This paper presented a temporal fusion transformer-based
hour-ahead PV forecasting methodology. PV forecasting in-
volves highly stochastic meteorological data like irradiation
and temperature. The features contributing to solar output gen-
eration are mostly time-varying unknown covariates. The TFT



architecture is capable of multi-horizon forecasting consider-
ing the complex mix of input variables including known and
unknown future input variables. TFT produced better results
in comparison with some of the state-of-the-art forecasting
models for a real PV dataset. Finally, an analysis of TFT
produced interpretable insights into the temporal dynamics of
the input features has been presented.
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