
EasyChair Preprint
№ 13763

On Singular Bayesian Inference of
Underdetermined Quantities

Fabrice Pautot

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 2, 2024



 

 
 

 

 
Phys. Sci. Forum 2024, 4, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/psf 

Proceeding Paper 1 

On Singular Bayesian Inference of Underdetermined Quantities† 
2 

Part I: Invariant discrete ill-posed inverse problems in small and large dimension 3 

Fabrice Pautot, Independent Researcher, fabrice.pautot@proton.me 4 

† Presented at the 43th International Workshop on Bayesian Inference and Maximum Entropy Methods in 5 
Science and Engineering, Ghent, Belgium, 1–5 July 2024 6 

Abstract: When the quantities of interest remain underdetermined a posteriori, we would like to 7 

draw inferences for at least one particular solution. Can we do that in a Bayesian way? What is a 8 

probability distribution over an underdetermined quantity? How to get a posterior for one partic- 9 

ular solution from a posterior for infinitely many underdetermined solutions? Guided by invari- 10 

ant underdetermined ill-posed inverse problems, we find that a probability distribution over an 11 

underdetermined quantity is non-absolutely continuous, partially improper wrt the initial refer- 12 

ence measure but proper wrt its restriction to its support. Thus, it is necessary and sufficient to 13 

choose the prior restricted reference measure to assign partially improper priors by e.g. maximum 14 

entropy and the posterior restricted reference measure to obtain the proper posterior for one par- 15 

ticular solution. We can then work with underdetermined models such as Hoeffding-Sobol expan- 16 

sions seamlessly, especially to effectively counter the curse of dimensionality within nonparamet- 17 

ric inverse problems. We demonstrate Singular Bayesian Inference (SBI) at work in an advanced 18 

Bayesian Optimization application: dynamic pricing. Such a nice generalization of Bayesian- 19 

maxentropic inference could motivate many theoretical and practical developments. 20 

Keywords: Underdetermined/indeterminate/non-identifiable/invariant quantities, partially im- 21 

proper/degenerate/singular/non absolutely continuous probability measures, reference measure, 22 

ill-posed inverse problems, inter/extrapolation, curse of dimensionality, MaxEnt, 23 

HDMR/Hoeffding-Sobol expansions/fANOVA/interactive splines. 24 

 25 

1. Introduction 26 

Many problems in science and engineering, especially inverse ones, involve quantities, 27 

parameters or solutions that are underdetermined and therefore non-identifiable a priori 28 

and sometimes remain so a posteriori. For example, if a statistical or physical model in- 29 

volves a sum resp. a product of several parameters, then these are (under)determined, 30 

invariant up to additive resp. multiplicative constants, a priori and a posteriori. For ex- 31 

ample, in medical dynamic contrast-enhanced imaging, the kinetic continuity equation 32 

for a contrast agent advected by the blood involves the ratios of the plasmatic volumet- 33 

ric flow rates to the plasma volume [1] (p. 20, eq. 47). Those parameters are therefore 34 

globally non-identifiable until we add further cogent information and that can become a 35 

challenge in medical research and clinical practice. Similarly, the solutions of a con- 36 

sistent underdetermined, i.e. indeterminate system of linear equations Ax = b  (like the 37 

cubic spline coefficients below) are determined up to ( )ker A .  38 

When such quantities remain underdetermined a posteriori, we would like to estimate 39 

and draw inferences for at least one particular solution, from which we could, if neces- 40 

sary, estimate and draw inferences for all the solutions. If it is common to do this in a 41 

non-Bayesian way, e.g. by evaluating the particular solution +

0
x = A b  and the general 42 
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solution ( ) , n

n + +
x = A b + I - A A w w  for an indeterminate system of linear equations, 1 

as far as we know this has not been done yet in a probabilistic way. That is unfortunate 2 

since such an approach should make it possible to obtain the credible intervals or the 3 

High Posterior Density Regions that must accompany any estimate or measurement ac- 4 

cording to e.g. the ISO Guide to the expression of uncertainty in measurements [2], well- 5 

determined or not. The purpose of Bayesian Numerical Linear Algebra is precisely to es- 6 

timate the solutions of systems of linear equations together with their credible intervals, 7 

but to the best of our knowledge it is currently limited to well-determined systems with 8 

non-singular, positive definite matrices [3].  9 

What is a probability distribution ( )p x  when x  is underdetermined? How to assign 10 

such distributions by standard means like the principle of maximum entropy? Given a 11 

posterior ( )p Dx  for some underdetermined x , how to get a posterior ( )0p Dx  for one 12 

particular solution 0x ? Where does 0x  come from? While these questions may seem 13 

puzzling at first, the situation clears up considerably once we return to invariant ill- 14 

posed nonparametric inverse problems whose solutions are in general underdetermined 15 

at least a priori. 16 

2. Invariant discretized nonparametric ill-posed inverse problems in small dimension 17 

Without this belief [in the principle of continuity]…, 18 

interpolation would be impossible…, science would not exist. 19 

Henri Poincaré [4] 20 

 21 

Functional, nonparametric inverse ill-posed problems like inter/extrapolation, also 22 

known as functional regression, deconvolution or reconstruction are ubiquitous in all ex- 23 

perimental sciences. For Poincaré [4] and many others they are nothing but Bayesian prob- 24 

lems. To make it concrete, and without loss of generality, let us nevertheless restart with 25 

the variational formulation of the classical (noisy) inter/extrapolation or functional regres- 26 

sion problem 27 

 ( )
( )( ) ( ) ( )

2,2

2 2

, 1

1ˆ arg min d

bN
k

i i
f W a b i a

f y f x f x x
N b a



 =

= − +
−

   (1) 28 

We want to reformulate and process it in in a purely Bayesian way. There are at least 29 

two main issues in this endeavor. 30 

2.1 Infinite-dimensional function spaces: discretization 31 

The first one is the need to define probability measures and to draw inferences over 32 

infinite-dimensional function spaces such as the Sobolev space  ( )2,2 ,W a b . Interestingly, 33 

this issue has been addressed in several ways that are deeply interconnected but neverthe- 34 

less yield significantly different solutions, including: 35 

 36 

• Reproducing Kernel Hilbert Spaces (RHKS) and random/stochastic process the- 37 

ories [5][6]; 38 

• In some extent, Gaussian process (GP) functional regression, also known as 39 

kriging or Wiener-Kolmogorov prediction. But GP regression is anything but 40 

Bayesian since the GP “prior” is updated via “GP conditioning” instead of Bayes 41 

rule [7][8]; 42 

• Information Field Theory whose purpose is to directly generalize classical, finite- 43 

dimensional Bayesian inference to countably infinite dimension using tools bor- 44 

rowed from Quantum Field Theory like path integrals [9]; 45 

• Discretization or projection [10][11], that is estimating only a finite subset 46 

( ) ( ) 1 ,..., nf x f x=f  of the function images on a grid  1,..., nG x x=  by approxi- 47 
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mating the differential operator d / dk kx  by a finite differences scheme and the in- 1 

tegral ( ) ( )
2

d

b
k

a

f x x  by a numerical method like the trapezoidal rule [11]. In this 2 

way we get rid of any measure-theoretic issue, or rather we shall better control 3 

them, and we don’t need any structure nor machinery beyond the original func- 4 

tion space. 5 

 6 

Generally speaking, the last approach is the “cheapest”, the safest and the right one as 7 

soon as we consider that it is better to take the limit n →+  only at the very end of the 8 

calculations, not at the very beginning (Gauss, Poincaré, Jaynes).  9 

But in functional problems, there is a special reason for doing so. We are supposed to 10 

propagate the uncertainties on all parameters of interest by computing their marginal pos- 11 

teriors and by taking Bayes estimators such as marginal posterior expectations under 12 

quadratic loss function together with credible intervals such as marginal posterior stand- 13 

ard deviations. Having the right posterior credible intervals or HPDR is crucial, especially 14 

if the function estimates are to be used as meta-/surrogate models within Bayesian Opti- 15 

mization or Design of Experiments that entirely rely on uncertainty quantification. In other 16 

words, we dismiss the Maximum a posteriori estimator (MAP) because it does not propa- 17 

gate uncertainty, so that there is no direct mapping between variational minimization 18 

problems and their truly Bayesian counterparts. 19 

By completeness, a continuous function is uniquely given by the set of its images on a 20 

countable but dense subset of its domain. Therefore, estimating a continuous function 21 

boils down to estimating a countably infinite number of parameters. Given that estimating 22 

n  parameters with uncertainty propagation requires the calculation of at least n  n−di- 23 

mensional integrals (e.g. the marginal posterior expectations), from a purely Bayesian 24 

standpoint, estimating a continuous function boils down to evaluating a countably infinite 25 

number of countably infinite-dimensional integrals. From this standpoint, estimating only 26 

a finite set of the function images and computing finite-dimensional integrals in a first step 27 

definitely appears to be a reasonable choice. 28 

2.2 Invariance up to polynomials and partially improper priors 29 

The second difficulty can occur for any 0k  . Poincaré principle of continuity above 30 

corresponds to 1k  . The null space of the differential operator d / dk kx  is the k −dimen- 31 

sional vector space of polynomials of degree at most 1k − . Hence, the function ( )f x  is a 32 

priori (under)determined, invariant up to those polynomials unless we add sufficiently 33 

many boundary conditions to break this invariance a priori and, subsequently, a posteriori 34 

[8] (p. 6).  35 

As an example, in the variational setting with 2k = , recall that the solution of (1) is 36 

given by underdetermined cubic splines with 4 4n −  unknown coefficients and 4 6n −  37 

conditions. Hence, we typically add two extra boundary conditions ( ) ( ) ( ) ( )2 2
0f a f b= =  38 

to make the coefficients well-determined and to finally get natural cubic splines [6] (pp. xii- 39 

xiii). But in most circumstances such boundary conditions do not exist, especially when we 40 

need to extrapolate the function outside the range of past observations, which is impossi- 41 

ble with cubic splines. 42 

As observed by many authors [5][6][12][13][14][15][17], from the Bayesian standpoint, 43 

the prior invariance modulo polynomials of a regularization penalty with a differential 44 

operator implies that the corresponding prior is “partially improper” [6] (and non- 45 

informative) or, conversely, “partially informative” [16]. In measure theory, such non- 46 

absolutely continuous measures that concentrate their mass on a Lebesgue-negligible sub- 47 

set/subspace are also known as degenerate measures or singular probability distributions. 48 

Precisely, upon discretizing the problem, we find that the quadratic form or precision 49 

matrix R  for the regularization penalty with differential operator d / dk kx  has rank defi- 50 

ciency k  without extra boundary conditions. For sake of simplicity, we skip all technicali- 51 
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ties and we simply assume that the discretization grid  1,..., nG x x=  is regular 1 

 1 2, ,..., nG x a x a x x b= = = +  =  with discretization step x  and that  , 1,ix i N G=  . G  2 

may be larger than the range of  , 1,ix i N= , e.g. in extrapolation problems, and G may 3 

be finer than the natural grid, e.g. if we want to oversample a periodically sampled sig- 4 

nal.  5 

As an example, we numerically approximate ( ) ( )2
f x  over G  by Lf  with a second- 6 

order accuracy centered finite differences scheme on the interiors points , 2, 1ix i n= − , a 7 

second-order forward scheme on the left boundary 1x a=  and a second-order backward 8 

scheme for the right boundary nx b=  [17]: 9 

2

2 5 4 1 0 0

1 2 1 0

0
1

0

0 1 2 1

0 0 1 4 5 2

x

− − 
 

− 
 
 

=  


 
 

− 
 − − 

L  10 

To implement e.g. the trapezoidal rule for numerical integration, we just divide the 11 

first and last rows of L  by 2 . Finally ( ) ( )
222

2

1
d

b

a

x x
f x x

b a b a b a

 
=

− − −
T T T

Lf f L Lf f Rf  12 

L  and R  have rank deficiency 2  as expected. Now, if we add for instance two Di- 13 

richlet boundary conditions ( ) ( ) 0f a f b= = , we can use a centered finite differences 14 

scheme at the new boundary points 2x  and 1nx −  and L  becomes the ( ) ( )2 2n n−  −  full 15 

rank matrix 16 

2

2 / 2 1/ 2 0 0

1 2 1 0

01

0

0 1 2 1

0 0 1/ 2 2 / 2

x

 −
 

− 
 
 =

  
 

−
 
 − 

L  17 

 18 

Let ( )1,..., Nx x
T

X , ( )1,..., Ny y
T

Y  and    . Suppose that the likelihood is i.i.d. 19 

maxentropic Gaussian with standard deviation  . There exists a n n  diagonal precision 20 

matrix/quadratic form D  and a 1n  column vector J  such as  21 

( )
( )( ) ( )

2

2 2
1

1 1
2

2 2, ,

N

i i

i

y f x
N Np e e

   =

− − − − +
− −


 

T T T
f Df J f Y Y

Y f X  22 

2.3 The regular case 23 

If R  is positive definite (e.g. Tikhonov regularization 0k =  or k  linearly inde- 24 

pendent extra boundary conditions [8]), we apply the principle of maximum entropy 25 

(MaxEnt) by constraining the first two moments μ  and 1−=Σ R  to convert the regulari- 26 

zation quadratic form T
f Rf  into the proper multivariate regularization/smoothing 27 

Gaussian prior ( ) ( )
( ) ( )2

2 2, , , /
n

p e



   
−



T
f -μ R f -μ

f μ R .  28 

With e.g. ( ) 1p μ , ( ) 1p   −  and ( ) 1p   − , the joint posterior writes 29 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2 2 2

2

1
2

1 1 2

, , , , , , , , , ,

N n n

p p p p p p

e
  



      

 
 

− + − + + + − + + −  

 

T
T T T

f D R f J Rμ f μ Rμ Y Y

f μ X Y R Y f X f μ R μ
 30 
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For comparison with the singular case below, in particular we have 1 

( )

( )

( )
( )

1
2

1
2

1
2 2

1

1 2 2

, , 0, , ,

, , 0, , , diag

, , 0, , /np e


  

   

   

−

−

−

+
−

= = +

= = +

=  +
T

J D R J

f X Y μ R D R J

f X Y μ R D R

X Y μ R D R

 2 

From the linear algebra standpoint, the posterior precision matrix/quadratic form 3 
2+D R  is a symmetric linear matrix pencil ( )D,R  [18]. 4 

2.4 The singular case 5 

When R  is singular positive semi-definite, which is the most common situation, we 6 

face two issues. 7 

First, we cannot apply MaxEnt directly anymore to get a partially improper Gaussi- 8 

an regularization prior like ( ) ( )
( )

2

2rank
2, , /p e



   
−


T

f RfR
f R  since it has no differential 9 

entropy. For the time being, let us nevertheless assume that we can assign such prior. By 10 

contrast to the regular case where the proper prior is not location-invariant because it 11 

has a first moment so that we must introduce a location parameter μ  even if it does not 12 

change the differential entropy, it makes no sense to introduce such a location parameter 13 

in a partially improper prior because it has no first moment. It follows that the posterior 14 

expectations will be entirely determined by the data. That’s exactly what we want: the 15 

problem being a priori location-invariant, we should not say anything at all about loca- 16 

tion: a location-invariant prior must not have a first moment. A non-location-invariant 17 

proper prior with a non-informative location hyperprior e.g. ( ) 1p μ  has nothing to do 18 

with a location-invariant prior that is necessarily partially improper. 19 

Second, the posterior precision matrix and pencil may be singular and positive 20 

semi-definite too. If R  or D  is positive definite, then ( )D,R  is regular, i.e. 21 

20, 0   + D R . D  has rank equal to the number of different values in  , 1,ix i N=  22 

and is positive definite iff  , 1,iG x i N = . If R  has rank deficiency k , ( )D,R  has rank 23 

deficiency at least ( )max 0,k N− . Therefore, ( )D,R  is singular, i.e. 20, 0   + D R , 24 

and the joint posterior is singular as well (in the sense of probability theory, i.e. still non 25 

absolutely continuous, partially improper, degenerate) for at least all N k . 26 

In many applications, the sample size N  is very large compared to k  so that the 27 

posterior pencil is non-singular with very high probability. But thats not true in other 28 

important, “small data” applications like Bayesian optimization or Design of Experi- 29 

ments: starting from only two samples ( )1 1,x y  and ( )2 2,x y chosen at random, the goal is 30 

to find the next sample ( )3 3,x y  that optimizes some criterion, e.g. minimizes the predic- 31 

tive Shannon entropy of the arg max  of an expensive black-box function. D  has rank at 32 

most 2  and, without extra boundary conditions, the joint posterior is singular for any 33 

2k  : f  remains underdetermined a posteriori but we nevertheless need to estimate at 34 

least one next optimal sample. 35 

Hence, it appears that probability distributions over underdetermined quantities 36 

are partially improper. It remains to explain how to assign them and how to estimate at 37 

least one particular solution from a partially improper posterior when the solutions re- 38 

main underdetermined a posteriori. 39 

3. Partially improper-proper measures or how to estimate underdetermined quantities 40 

Let ( ),X μ Σ  be a n−dimensional partially improper Gaussian measure with 41 

singular positive semi-definite, k − rank deficient covariance matrix +=Σ R  or precision 42 

matrix + =Σ R . X  concentrates its mass on its ( )n k− − dimensional support 43 
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( ) ( ) ( )   Supp , 0 ,n nX =  − −  = 
T 1/2

x x μ R x μ μ + Σ v v  that has Lebesgue measure 1 

0 . It follows that ( ) ( ) ( )Supp , 0 , 0nE X p X E E p X E   =    = . 2 

Thus, such distribution is not absolutely continuous with respect to the reference 3 

measure, here the Lebesgue measure ( ) 1d ...dn

nx x = . Subsequently, it has no probabil- 4 

ity density function, i.e. no Radon-Nikodym derivative ( )d / d nX  , no moments, no 5 

differential entropy, nothing. 6 

However, by the disintegration theorem, X  is proper wrt the restriction 7 

( )( )Supp X  of the Lebesgue reference measure ( )n  to its support at the same time, 8 

with probability density function ( ) ( )
( ) ( )

1

2, d / d Supp 1/p X X e
+− − −

=   

T
x μ Σ x μ

x μ Σ Σ  9 

where +
Σ  stands for the Moore-Penrose pseudo-inverse and 

+
Σ  for the pseudo- 10 

determinant [19][20].  11 

We are free to choose any reference measure we like. So, replacing the unrestricted 12 

original reference measure by the dominating restricted one is how we go back and forth 13 

from the world of infinitely many underdetermined quantities to the world of one par- 14 

ticular solution. We proceed as follows.  15 

1) Select the restricted prior reference measure ( )prior Supp    R  and apply MaxEnt 16 

without constraining the first moment to get the proper Gaussian regularization prior 17 

( ) ( ) ( )
( )

2

2rank
2

prior, , d , , / λ /p d e



     
+−

= 
T

f R fR
f R f R  whose differential entropy is 18 

1
ln 2

2
e

+
+

R .  19 

2) Select the initial reference measure ( )n  seen as the product measure 20 

( )prior Supp 
⊥ 

 
R . The prior becomes partially improper with pseudo, unnormalizable 21 

probability density function ( ) ( ) ( ) ( )
( )

2

2rank
2, , =d , , / dλ /np e



     
−


T

f RfR
f R f R . 22 

3) Select the restricted posterior reference measure ( )posterior Supp ,    D R  and write Bayes 23 

rule directly wrt it for one particular solution 0X  24 

( ) ( ) ( )0

posterior posterior posterior

d d d

d d d

X D D X X

  
  25 

In this way, after all, partially improper posteriors disappear. Generally speaking, 26 

both ( ) posteriord /dX  and ( ) posteriord /dD X   still are partially improper wrt to posterior  be- 27 

cause ( ) ( )Supp Supp ,D D R  and ( ) ( )Supp Supp ,R D R  but that does not matter. The 28 

posterior ( )0 posteriord / dX D   e.g. ( )0 , , , ,p  f X Y R  for the particular solution 0f  is proper 29 

Gaussian with posterior precision matrix 2+D R .  30 

At the end, we just need to replace the posterior inverse by the pseudo-inverse and 31 

the determinant by the pseudo-determinant to estimate one particular solution 0f  32 

( )

( )

( )
( )2

2

0

2 2

0

1

rank( ) 1 2 2

, , , ,

, , , , diag

, , /p e


  

   

  

+

+

+

++
−

= +

= +

 +
T

J D R J
R

f X Y R D R J

f X Y R D R

X Y R D R

 33 

At this point we should provide some experimental results but let us first deal with 34 

the intra/extrapolation problem in arbitrary dimension. 35 

4. Invariant discrete ill-posed inverse problems in large dimension 36 
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4.1. Tackling the curse of dimensionality 1 

Now, we consider the problem of inter/extrapolating a scalar function ( )1,..., df v v  2 

of d  variables. The d −dimensional, k −order regularization penalty becomes e.g. 3 

( ) ( )
1

1

2

1

... 1

d ...d
... d

d

k
k

d

k d

f
R f v v

v v


 + + =

 
=  

  
     (2) 4 

Clearly, the main issue is the curse of dimensionality (COD): the number of func- 5 

tion images to be estimated on the d −dimensional hypergrid G  is exponential in d . 6 

We can think about many approaches to fight the COD such as sparse grids [21] but SBI 7 

provides an extremely simple and powerful, fully probabilistic, semi-nonparametric 8 

way to go polynomial in d . 9 

Basically, we want to approximate function f  by some functions whose number of 10 

variables is smaller than d  and bounded. To remain Gaussian when both the likelihood 11 

and the prior are Gaussians, we must remain quadratic and, subsequently, linear, addi- 12 

tive. Therefore, we are led to approximate function f  by a sum of functions. 13 

A first possibility, motivated by the Kolmogorov-Arnold representation theorem, is 14 

to introduce a generalized additive model (GAM) [22] that approximates f  as a sum of 15 

univariate functional components ( ) ( )1 0

1

,...,
d

d i

i

f v v f f v
=

+ . Clearly, those components 16 

are underdetermined up to additive constants but that identifiability issue is easily fixed 17 

by requiring all components to have e.g. zero mean, which are linear constraints. How- 18 

ever, GAM are coarse and certainly not the best approximation when we are precisely 19 

interested in the interactions between tuples of variables iv . 20 

4.2. Classical constrained well-determined HDMR 21 

A much more powerful model, which includes GAM at first order, is High Dimen- 22 

sional Model Representation (HDMR) [23][24][25][26], also known as (generalized) 23 

Hoeffding-Sobol expansions [25][26], (generalized) functional ANOVA decomposition 24 

[23][25][27] or interactive spline models [6][28]. We can write any function of d  varia- 25 

bles as 26 

( ) ( ) ( ) ( ) ( )1 0 , , , 1

1 1 1 1 1 1

,..., , , , ... ,...,
d d d d d d

d k k k l k l k l m k l m r d

k k l k k l k m l

f v v f f v f v v f v v v f v v
= = = + = = + = +

= + + + + +     27 

Therefore, we truncate this expansion at e.g. second order 28 

( ) ( ) ( )1 0 ,

1 1 1

,..., ,
d d d

d k k k l k l

k k l k

f v v f f v f v v
= = = +

+ +   29 

Now, each p − variate functional component is determined up to functions of at 30 

most 1p −  variables. Making this representation well-determined and unique again is 31 

less easy. We typically add hierarchical orthogonality constraints a priori that decom- 32 

pose the variance when the input variables iv  are mutually independent. That property 33 

makes constrained Hoeffding-Sobol expansions the basis of global factorial sensitivity 34 

analysis (e.g. Sobol indices) [23][25] and constrained HDMR a glass box of Machine 35 

Learning allowing to explain black-box ML algorithms such as kernel methods or deci- 36 

sion trees [25]. 37 

Unfortunately, said scalar products are multiple integrals of dimension up to d  38 

[23][24][25][26]: the COD is back. To overcome it again, those integrals are approximated 39 

by Monte-Carlo methods like Random Sampling-HDMR [23][24]. But, since the required 40 

number of samples for those Monte-Carlo approximations to be sufficiently accurate 41 

may be huge, we finally introduce some functional basis to reduce it by going paramet- 42 

ric [23][24]. So, starting from essentially nonparametric models to fight the COD, we end 43 

up with essentially parametric methods because unconstrained models are underdeter- 44 

mined and fitting constrained ones still suffers the COD. That’s just one example and we 45 
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find plenty of algorithms and methods whose purpose is, after all, only to mitigate the 1 

COD due to said prior constraints. 2 

4.3. Unconstrained underdetermined HDMR 3 

Fortunately, thanks to SBI, those prior constraints become not only unnecessary but 4 

also undesirable, given that they can be added only a posteriori if ever required, for in- 5 

stance to compare several HDMR expansions each other. 6 

We can work seamlessly with unconstrained, underdetermined models that always 7 

fit the data better than constrained ones. We just need to plug the HDMR expansion into 8 

the regularization penalty (2) to get the “maxentropic” partially improper Gaussian pri- 9 

or ( )0, +
R  for the stacked vector f  of all HDMR components unknowns. R  still is 10 

band diagonal. The likelihood quadratic form D  becomes a block matrix with huge 11 

structural rank deficiency. Of course, the posterior matrix pencil ( ),D R  is always singu- 12 

lar since the HDMR components remain underdetermined a posteriori. Then, we esti- 13 

mate one particular HDMR representation together with its posterior credible intervals 14 

by computing the marginal posterior moments of the proper posterior wrt the restricted 15 

posterior reference measure as described above, from which we can estimate any other 16 

particular representation we like. 17 

5. Application and results: multi-product dynamic pricing 18 

5.1. Multi-product dynamic pricing as singular Bayesian Optimization 19 

SBI has been directly implemented, tested and validated in an application that is 20 

too sophisticated to be described in detail here: multi-product dynamic pricing.  21 

Starting with past observed sales data over time t  for a set of P  potentially mutu- 22 

ally dependent (i.e. complementary/halo or substitutable/cannibal) products or goods, 23 

including selling price vectors tp , sales volumes i

tQ  and numbers of potential and actual 24 

anonymous customers E

tN  and i

tN , the goal is to maximize a black-box, expensive fi- 25 

nancial criterion like the total revenue or the total profit margin by Bayesian Optimiza- 26 

tion. We need to compute the probability distributions of two demand functions of the 27 

P − dimensional price vector p  per product, the potential-to-actual customer conversion 28 

rate ig  and the sales volume per customer if , which are the mathematical expectations 29 

of a  −Poisson likelihood ( )( ) ( )( )
1

, , ,
P

i i i E

t t i t t t i t

i t

Q N f t N N g t
= 

 p p . 30 

From the posterior distributions for those demand functions, we get the posterior 31 

distributions for the sales volume Q , for the criterion per potential customer for each 32 

product and finally for the total criterion to be optimized. We use second-order 2k =  33 

partially improper Gaussian smoothing priors without any boundary condition because 34 

we need to extrapolate the functions on the whole price search intervals and, because the 35 

demand functions should go to 0+  when the selling prices go to + , second-order un- 36 

derdetermined multiplicative, factorized HDMR instead of additive ones 37 

( ) ( ) ( ),

1 1 1

,
P P P

i i i j i j

i i j i

h h p h p p
= = = +

 p  38 

Hereafter, the demand functions are stationary, but they may depend on time. In 39 

this case, we can use combined partially improper spatiotemporal priors with total vari- 40 

ation regularization 1k =  over time for the stacked vector t
f  of all unknowns over time 41 

( )
( )2 21

2 2 2,
t p p t t t

t p t p p t tp e
 

   
− ++

 +
T

f R R f

f R R  42 

that yield extremely low-rank posterior precision matrices 2 2

t p p t t + +D R R . 43 

To validate the estimation of the HDMR functional components, they are just re- 44 

scaled a posteriori by setting all their means to 1  but the univariate component depend- 45 



Phys. Sci. Forum 2024, 4, x 9 of 12 
 

 

ing on the product own price. Bayesian optimization is done by exhaustive search on an 1 

acquisition function like Predictive Entropy Search [29] to avoid local minima and to val- 2 

idate the highly singular estimation stage. All posterior calculations are done analytical- 3 

ly using suitable transformations and approximations but the marginalization of the 4 

regularization hyperparameters that is done by simple one-dimension numerical vector 5 

integration. 6 

Functional validation is done via computer simulations with ground truth: given 7 

demand functions with known optimal prices, we generate random past sales data. We 8 

compute the marginal posterior moments of the criterion to be optimized and we esti- 9 

mate the next optimal price vector 1p  by Bayesian optimization of the acquisition func- 10 

tion. Then, we generate new random sales data according to prices 
1p , estimate the next 11 

price vector 2p  and we repeat the process until convergence or not towards the optimal 12 

prices.  13 

5.2. Exprimental results 14 

Figure 1 shows the results of a 7− product dynamic pricing problem. 10  different 15 

selling prices per product. Starting from scarce (compared to the cardinal of the sam- 16 

pling space) and bad sales data with selling prices far away from the optimal prices set 17 

to 60€ (red), the total revenue per potential customer (bottom center) is maximized very 18 

quickly after a few iterations. The 710  parameters to be estimated for each of the 14  de- 19 

mand functions reduce to 2618  thanks to second-order multiplicative underdetermined 20 

HDMR. For instance, we have rank( ) 2541=R , rank( ) 24=D  and rank( , ) 2549=D R .  21 

22 
Figure 1. 7 -product dynamic pricing results. Subplots 1-7 show the past observed sell- 23 

ing prices (red), the optimized prices (cyan) and the optimal prices (black) for each 24 

product over time. Subplot 8 (bottom center) shows the corresponding empirical past 25 

observed (red), optimized (cyan crosses) and theoretical optimal (black) total profit mar- 26 

gin per potential customer over time. 27 

 28 

Figure 2 shows the marginal posterior expectations and standard deviations for the 29 

univariate components of a second-order underdetermined multiplicative HDMR for 30 

both demand functions if  and ig  for one product in a 3− product dynamic pricing 31 

problem. All functions off the diagonal should be identically equal to 1  after rescaling 32 

because each demand function depends only on its own price. Probability matching 33 

looks satisfactory (i.e. 68%  coverage at 1 ). 34 
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 1 
Figure 2. Univariate second-order underdetermined multiplicative HDMR compo- 2 

nents marginal posterior expectations (red) and standard deviations (error bars) for both 3 

demand functions of one product in a 3− product dynamic pricing problem. 4 

 5 

Figure 3 shows the marginal posterior expectations and standard deviations for the 6 

bivariate components of second-order underdetermined multiplicative HDMR for both 7 

demand functions for a given product in a 3− product dynamic pricing problem. All 8 

functions should be identically equal to 1  after rescaling because each demand function 9 

depends only on its own price. Probability matching looks satisfactory as well. 10 

 11 
Figure 3. Bivariate second-order underdetermined multiplicative HDMR compo- 12 

nents marginal posterior expectations (red) and standard deviations (blue error bars) for 13 

both demand functions of one product in a 3− product dynamic pricing problem. 14 

6. Discussion and conclusion 15 

While the need to estimate underdetermined quantities is not a matter of discus- 16 

sion, to the best of our knowledge it has never been done probabilistically. This requires 17 

a counterintuitive conceptual leap, that of working with probability distributions that do 18 

not possess any of the usual and indispensable properties. Fortunately, ill-posed inverse 19 

problems guide us by imposing such distributions, a priori and a posteriori. Probability 20 

distributions for underdetermined quantities are found to be partially improper and we 21 

only need to restrict the initial reference measure to their support to go back and forth 22 

from the world of infinitely many underdetermined solutions to that of one particular 23 

solution. In the end, the procedure is essentially the same as in the non-probabilistic 24 

case, i.e. all we have to do is replace the inverse by the Moore-Penrose pseudo-inverse 25 

and the determinant by the pseudo-determinant of the posterior precision matrix, at 26 

least in the Gaussian setting. 27 

But SBI proves to be useful, if not indispensable, for perfectly well-determined 28 

problems as well. Until now, we used to fight the COD and to analyze high-dimensional 29 

functions and methods with additive or multiplicative, parametric or nonparametric 30 

representations. Although essentially underdetermined, they were made well- 31 

determined by adding prior constraints. Unfortunately, fitting well-determined models 32 
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with hierarchical orthogonality constrained models suffers the COD again. Thanks to 1 

SBI, we can work seamlessly with unconstrained, underdetermined models that always 2 

fit the data better than constrained ones with exponential speedup. We finally get much 3 

more simple, general, invariant and efficient ( )O N  and down to ( )3O d  or even ( )2O d  4 

algorithms with recursive low-rank updates, with user-supplied tradeoff between accu- 5 

racy and computational complexity. Despite their heaviness, constrained 6 

HDMR/Hoeffding-Sobol/fANOVA/interactive spline models were already of considera- 7 

ble interest in inverse problems, global factorial sensitivity analysis and explainable Ma- 8 

chine Learning. We can expect their unconstrained counterparts to be even more so. 9 

Much remains to be done. First, we should formalize SBI rigorously as it deserves 10 

and generalize it as far as possible. Certain theoretical consequences are immediate: 11 

there must exist a singular theory of underdetermined information fields. Others are less 12 

straightforward and requires some investigations. What is the impact of SBI on Infor- 13 

mation Geometry? Is the Fisher-Rao metric in the space of multivariate Gaussian 14 

measures with positive semi-definite covariance or precision matrices well-defined? 15 

How to cope with the reference measure juggling on the way? 16 

On the practical side, today the most popular meta-/surrogate model for Bayesi- 17 

an/parsimonious Optimization is GP functional regression. But it is not Bayesian, not in- 18 

variant a priori modulo polynomials with positive definite kernels, does not propagate 19 

uncertainty and has ( )3O N  generic computational complexity instead of ( )O N  for truly 20 

Bayesian nonparametric functional regression as soon as the likelihood factorizes. De- 21 

spite these flaws, it is popular thanks to its intrinsic immunity to the COD (why?) and 22 

perhaps due to the lack of efficient and user-friendly nonparametric Bayesian algorithms 23 

in large dimension. The situation could change with truly Bayesian functional regression 24 

combined with underdetermined models to fight the COD that is basically expected to 25 

outperform GP functional regression on all quality and efficiency evaluation criteria but 26 

perhaps the scaling in the number of variables. Subsequently, truly (singular) Bayesian 27 

functional estimation-based Bayesian Optimization is expected to outperform GP func- 28 

tional regression-based “Bayesian” Optimization, especially if it eases the evaluation and 29 

optimization of acquisition functions like Predictive Entropy Search. 30 

The next most obvious application of SBI would be to generalize Bayesian Numeri- 31 

cal Linear Algebra to indeterminate systems of linear equations but we cannot help but 32 

think of the possibility of building AI deep networks with unconstrained underdeter- 33 

mined nonparametric additive models that are linear in the parameters, in the same vein 34 

as Kolmogorov-Arnold networks [30]. 35 

Anyway, there is a nice singular and underdetermined world to explore. 36 
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