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Abstract. The importance of brain-computer interface (BCI) systems in modern-day
healthcare and robotics is indisputable. BCIs are commonly based on signals recorded
by electroencephalography (EEG) due to the ease of use and relatively low cost of
the measurement technology. Evoked potentials (EP) are well-measurable with EEG
and can be utilized to control BCIs. The processing of these signals is a very complex
task, because of the low signal-to-noise ratio, the inter-subject, and inter-measurement
variability. In recent years, deep learning (DL) methods have proven to be powerful
algorithms for signal processing and decoding. However, a large amount of data with
good quality and variety is needed in order to train DL models properly and use them
as generally as possible. Finding such a publicly available data set or even creating
one is a resource-intensive task. Denoising Diffusion Probabilistic Models (DDPM)
got more attention over generative adversarial networks (GAN) only recently and in
image processing tasks they achieved state-of-the-art results. In this work, We propose
a DDPM, called EEGWave, for brain signal generation and show that DDPMs are
promising options for augmenting EEG data sets. We present our results on a data
set which contains EPs to present the performance of the model in the signal synthesis
task.
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1 Introduction
Brain-computer interfaces (BCIs) give the opportunity to communicate or con-
trol external devices only with brain signals. These systems are used in many
fields from healthcare to entertainment, but most importantly, BCIs are useful
associate devices for people with limited communication or movement abilities
in their everyday life. BCIs record brain activity, detect temporal and frequency
patterns and decode these data into actions. Low limitation, high safety and
comfort are examples for requirements of the interfaces. BCIs must be usable
in real-time with high speed and accuracy.

Although many brain recording technologies exist (e.g. MRI, CT), electroen-
cephalography (EEG) is one of the procedures with the highest temporal reso-
lution and lowest costs. EEGs can be placed both on the scalp and intracranial
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(often called electrocorticography), but non-invasive EEGs mean much fewer
complications. Event-related potentials (ERPs) and motor imagery (MI) sig-
nals can be used for controlling BCIs, and these signals are well-measurable
by EEGs, thus making EEG-based BCIs highly common. BCIs translate the
measured signals into actions through classification, detection, or similar tech-
niques. Non-invasive EEG signals have a very low signal-to-noise ratio (SNR)
and the recordings are contaminated with so-called artifacts that originate from
different parts of not just the cortex but the whole body. Furthermore, the
intra-subject and intra-measurement variability are high, so the signal decoding
algorithm has to be highly robust to be applicable as generally as possible.

Deep learning (DL) is more and more popular in EEG signal processing. [1]
The major advantage of DL algorithms is automatic feature extraction from
minimally pre-processed or even raw data, whereas traditional algorithms (e.g.
independent component analysis, support vector machines) are highly depen-
dent on proper manual feature engineering. DL approaches are becoming more
efficient in complex problem solving, however, a lot of data is inevitable for the
proper training of these models. [2]

In the medical field, finding sufficient publicly available data to develop a
well-functioning DL algorithm is a challenge. Recording a data set is a time
and resource-consuming process. Professionals are often needed to check and
exclude invalid data samples in order to obtain a set with samples of high quality.
Furthermore, the handling of personal information must be appropriate and has
to be done with great care. [3, 4] Because of the mentioned issues, it would be
beneficial to find other ways to obtain EEG data.

Several works have been published, demonstrating the promising capabil-
ities of general adversarial networks (GAN) [5–7] and, more recently, denois-
ing diffusion probabilistic models (DDPM) [8–10] in data generation tasks. In
these setups, life-like samples are generated by algorithms, which have similar
statistical properties to the original data samples. GANs and variational auto-
encoders (VAEs) can generate images with so high fidelity that even a person
could not tell that the synthetic image is fake. The training of GANs is ill-
posed due to stability issues and VAEs need auxiliary objective functions in
lots of cases. DDPMs have gained more attention in the last couple of years
as they require neither special losses nor specialized training to be trained well.
DDPMs achieved state-of-the-art results in both image and audio processing
tasks. However, in EEG signal processing the capabilities of this framework
have not been explored, yet.

Our work aims to synthesize EEG data with ERP signals. In our approach,
we generate new data samples from the underlying distribution of the real sam-
ples by using a DL architecture in a DDPM framework. The current study has
the following contributions:

• Introduction of EEGWave, a novel DDPM model with bi-directional di-
lated convolutional layers for high-resolution EEG signal processing in a
DDPM framework.
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• Synthesis of EEG recorded ERP data with a DDPM. A comparison of the
performance of EEGWave and a GAN shows that our model is capable of
brain signal generation with high fidelity and diversity without producing
many artifacts in time or frequency domains.

The structure of this work is as follows: in 2 the basics of EEG technology
and DDPM models are given. Our EEGWave architecture is presented in 3, the
description of the experiment with the used data set, procedures and metrics is
given in 4 and finally, we present the performance of EEGWave in 5, followed
by closing thoughts in 6.

2 Background

2.1 Electroencephalography

Many of brain signals that are measurable via EEG have been useful in under-
standing brain activity, diagnosing mental and physical illnesses, and regulating
BCIs. EEG can record the electrical activity of the brain, which is the result
of the firing of neurons. The measured signals have several characteristics from
which the most common ones are the amplitude alterations in time domain, the
spectral components and the phase. For example, based on frequency, signals
can be grouped into 5 major frequency bands: the delta, theta, alpha, beta and
gamma.

EEG has several advantages, but also challenges. [11] Brain activity is mea-
sured in a non-invasive manner using electrodes placed on the scalp. The use of
an EEG device is relatively inexpensive and less complicated compared to other
brain imaging technologies, e.g. fMRI, PET, CT, although fMRI and NIRS
are often used as complementary methods to obtain more information from the
brain. [12], [13] The temporal resolution of the technology is determined by the
sampling frequency therefore samples can be obtained with a difference of only
a couple of milliseconds. Most EEGs record signals with a sampling frequency
from 128-1024 Hz. [14]

The major challenge of the use of EEG is that as the electrodes are placed
on the scalp, they can record only the superposition of different signals from
the different areas of the brain. The spatial resolution of the technology is
considered low, (especially compared to e.g. fMRI or CT) and it is the indication
of the number of electrodes used during the procedure. With more electrodes,
the origin areas of the signals can be specified better, although the number
of electrodes is limited to 256 at most in most cases. The 10-20 and 10-10
international standards define the position of the electrodes. Another issue with
non-invasive electrodes is that they can only measure neural activity in the order
of microVolts. Therefore these signals are often heavily contaminated with noise
and artifacts, thus being the signal-to-noise ratio (SNR) of the measured data
low. [14]

ERP signals are well-explored and commonly used in BCI applications.
ERPs are elicited by both external and internal stimuli. A subcategory of ERPs
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consists of evoked potentials (EPs) from which the P300 is highly popular. P300
is characterized by its positive amplitude at 300ms after the onset of an external
visual or auditory stimulus. The detection of P300 components can be utilized
in control and communication tasks (e.g. P300 speller).

2.2 Denoising Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) were introduced by Sohl-Dickstein, Ma-
heswaranathan & Ganguli in [15]. DPMs are generative models that tend to
be more stable during training than GANs, also in contrast to other generative
a simple L1 or L2 objective function was enough in recent works to train the
model properly. Diffusion models learn the underlying log-likelihood of the orig-
inal data set, thus being capable of data synthesis with higher diversity than
any other generative models

A DPM is based on a fixed Markov chain that consists of a forward and
reverses the process, namely forward diffusion and reverse sampling. At one
end of the chain, there is a data sample from the real distribution of the data
set, while at the other end there is a noise sample from simple distribution (e.g.
Gaussian). The Markov chain consists of T number or states that in between
the transition are defined by a priori and a posteriori log-likelihoods.

The forward process takes the sample x0 from the original data distribution
q(x0) and adds a small amount of Gaussian noise to it in every step. The proce-
dure is called diffusion and the resulting data sample at the sufficiently large step
T, xT can be viewed as a noise sample from the isotropic Gaussian distribution
N (0, I). Each resulting element at the different time steps x1, x2, ..., xT−1 is the
perturbed version of the original sample. The whole diffusion process, which
converts the complex data distribution into a tractable latent one, is defined as:

q(x1, x2, ..., xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

, where the Markov transition is:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)

Although, βt ∈ (0, 1) could be learned, in earlier works [9, 10, 16], they
were hyper-parameters given in the form of a so-called variance schedule, which
defines the βs for every step t = 1, 2, ..., T . Notice that the βs in the schedule
are time-dependent and βt−1 < βt for every t > 1. As Ho et al. pointed out
in [9], efficient training of DDPMs is possible through sampling xt in a closed
form, which is given as:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (3)

, where αt = 1 − βt and αt =
∏t

s=1 αs and t is from the uniform distribution
U [1, T ].

A reverse diffusion process can be defined for data synthesis. If βt is small
enough, the inverse transition function have the same functional form as the
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forward one. [15] An xT ∼ N (0, I) sample is taken and then denoised recursively,
while going through the Markov chain in reverse and applying the conditional
transitions q(xt−1|xt), until the an x0 ∼ q(x0) sample is achieved. The task of
the neural network in a DDPM is to approximate the q(xt−1|xt) by pθ(xt−1|xt).
The chain for the transition from xT to x0 is given by

pθ(x0, x1, ..., xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt) (4)

,where the transition is given as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)I) (5)

µθ and Σθ can be predicted by the same model that takes a diffused xt

sample and a step t as its inputs. Through µθ and Σθ, the model predicts the
Gaussian noise with which the sample was perturbed. Ho et al. presented a re-
parameterization of the problem in which the variance schedule is used instead
of a Σθ, and the model predicts the noise ϵθ which should be subtracted from
the diffused sample. This re-parameterization is given as:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (6)

A DPM can be trained by maximizing the variational lower bound, however,
based on the re-parametrization and the connection with Langevin dynamics
under certain circumstances, Ho et al. showed that it is possible to use the
simple L2 (or even L1) loss as objective functions. The simpler loss takes the
form of:

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
(7)

Figure 1: Markov chain of the diffusion process.
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3 Methods

EEGWave is a novel denoising diffusion probabilistic model. The dimensions of
the input and output data are the same and we omit sampling layers to avoid
the production of temporal and spectral artifacts during data synthesis.

The model contains a group of residual layers, where each residual is con-
nected to an input and output stream. In the residuals, the encoded and em-
bedded diffusion noise at step t is added to the input temporal features (similar
to [16]), then the data is passed through a bi-directional dilated convolution
layer with a size 3 kernel. The resulted features are divided into two parts
along the channel dimension. Sigmoid and Tanh activations are applied to the
chunks and they are multiplied by element-wise multiplication. The data are
then passed through a point-wise convolution layer and the output of the con-
volution is divided into two chunks along the channel dimension, again. One
chunk goes into the next residual and the other is a direct output, called the
skip output.

The skip outputs are added to the other skips of the remaining residual
blocks. This design helps maintain proper gradient flow in the earlier layers
as well. Aggregated skip outputs are normalized. The output of the model
is produced by the final series of 1D convolution, ReLU, and 1D convolution
layers. There is no activation used on the output sample and the final output
is reshaped from (N x C x 1 x L) to (N x 1 x C x L), where L is the length of
the series and C is the number of EEG channels.

Figure 2: EEGWave architecture

An EEG data segment contains several frequency components from lower
to higher, so the distance between related points in the signals can be large
over the spatial-temporal dimension. The bi-directional dilated convolutions are
responsible for learning global spatial-temporal features. Dilated convolutions
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can operate relatively inexpensively while learning distant relationships with
fixed kernels.

The diffusion steps are embedded by encoding the step into a vector and
passing through a sequence of 2 linear layers, both followed by Swish activations.
Each residual block has a third, linear layer that allows the residual to learn
local characteristics from the global embedding. Coding is done with sine and
cosine functions, as in [17]. From each diffusion step t, a 128-dimensional vector
is created as follows:

tencoded = [sin(10
ix4
63 t), cos(10

ix4
63 t)], i = 0 : 63 (8)

The locally embedded noise features are produced by linear layers inside each
residual block.

In this work, the number of residual layers is set to 40 with a dilation cycle
of 20:7 . The kernel size is set to 3. The channel dimension is set to 128 in
the residual blocks. Diffusion noise is embedded into a 512-dimensional feature
space by the first two linears and into 128 by the third local linear layer in
each residual. The noise schedule is a 50-step linear schedule with βts in the
range [1e − 4, 0.05]. The training process of the model is shown in Algorithm
1. The EEG signals were generated according to Algorithm 2 that shows how a
white noise sample is taken at the beginning of the process, which is gradually
denoised to a synthetic ERP epoch.

We used PyTorch 1.11.0 to implement, train, and validate the model in our
framework written in Python 3.8.12. Training and testing ran on an NVidia
GeForce GTX 1660-Ti Max-Q (6 GB) GPU.

Algorithm 1 Training process
1: repeat
2: x0 ∼ q(x0)
3: t ∼ U [1, T ]
4: ϵ ∼ N (0, I)
5: xt =

√
αtx0 +

√
1− αtϵ

6: Optimizing step on ∇θ∥ϵ− ϵθ(xt, t)∥2
7: until converged

Algorithm 2 Sampling process

1: yT ∼ N (0, I)
2: for t = T, T − 1, ..., 0 do
3: yt−1 = 1√

αt
(yt − βt√

1−αt
ϵθ(yt, t))

4: if t > 0 then
5: z ∼ N (0, I)
6: yt−1 = yt−1 + β̃tz
7: end if
8: end for
9: return y0
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4 Experiment

4.1 Data set

The BCI Competition III data set II was recorded with a BCI2000 system.
Two subjects took part in the measurements, where their task was to write
particular characters by using a P300 speller. The P300 speller introduced by
consists of a 6x6 letter and number matrix. The rows and columns of the matrix
were intensified randomly at 5.7 Hz, so the target character was brightened up
twice during an intensification period. A total of 180 intensifications occurred
for each character. 64 electrodes were placed on the scalp and the recorded
signals were digitized at 240 Hz, followed by band-pass filtering between 0.1
and 60Hz. [18] In this work, we use data from the C3, Cz, C4, F3, Fz, F4,
P3, and P4 electrodes. Samples were extracted as epochs from the data set in
the range of [0, 1] seconds from the onset of the intensifications. The extracted
samples were down-sampled to 128 Hz and normalized by channel-wise mean
subtraction and variance division.

4.2 Training

In the signal generation task, the performance of EEGWave is compared to
the GAN model from [19], called WGAN in this paper for brevity. Both models
must generate EEG signals with P300 components. The generated and reference
signals are ERP signals triggered by visual stimuli. The models were trained
unconditionally without label embedding. Both models were trained for 1000
epochs. We used Adam optimizer for EEGWave with 2e-4 learning rate and
(0.99, 0.999) βs. We trained the WGAN as defined by the authors in [19].
For inference we use the exponential moving averaged weights in the case of
EEGWave.

The goal is to produce synthesized signals similar to real ones. The amplitude
and waveform, furthermore the frequency components of the generated and real
signals must be similar. The generated signals should contain as few temporal
and spectral artifacts as possible or none at all.

4.3 Metrics

The quality of the generated samples is measured by metrics that are commonly
used in studies regarding generative modeling.

Inception Score (IS) was introduced in [20], who observed that the metric
was correlated with human judgment in image annotation tasks. IS is defined
as:

IS = exp(Ex∼pg
DKL(p(x)∥Ex′∼pg

p(x′))) (9)

, where pg is the distribution over the generated samples and Ex′∼pg
is the

marginal label distribution.
Frechet Inception Distance (FID), which was defined as a metric for

generative modeling in [21], can measure both the fidelity and diversity of the
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generated samples. The metric is given as:

FID = ∥µr − µg∥2 + Tr(Σr +Σg − 2(ΣrΣg)
1
2 ) (10)

, where µr and µg are the mean vectors corresponding to real and generated
data features, also Σr and Σg are the correlation matrices of the real and fake
data features, respectively.

Sliced Wasserstein Distance (SWD) decomposes the Wasserstein dis-
tance (also called Earth-Mover Distance) into multiple 1D distributions and
calculates the metric based on the projections to save high computational bur-
den. The SWD is given as:

SWDp =
( ˆ

Sn−1

Wp(π
∗
θPx, π

∗
θPy)

pdθ
) 1

p (11)

, where Px and Py are the probability distributions, θ ∈ Sn−1 is a unit vector that
has an inner product πθ(x) = θTx and a marginal distribution π∗

θPx = Px ·π−1
θ .

( [22])
To be able to calculate IS and FID scores, the EEGNet ( [23]) classification

model was used. EEGNet was trained to detect P300 components. EEGNet
was chosen for this task as it achieved better results in the binary classification
problem and was less prone to over-fitting the training data. The classificator
was trained for 100 epochs and stopped the process with early-stop, based on the
validation loss. IS was calculated based on the softmaxed outputs of EEGNet,
while for FID determination the first two blocks of the model were used, the
last softmax activation and the linear layer were cut off from the network.

5 Results
We present qualitative and quantitative results. Table 1 compares the perfor-
mance of the models based on the synthesized signals by using the metrics given
in 4.3. EEGWave could outperform WGAN in all three metrics, indicating that
EEGWave could generate signals with better fidelity and higher diversity.

Table 1: Performance of WGAN and EEGWave in the EEG signal synthesis
task.

Model/Source IS↑ FID↓ SWD↓
WGAN 1.0046 1.4855 4.8696

EEGWave 1.0050 1.2232 4.6730

Figure 3 shows the comparison of the averaged generated and real epochs in
time domain. The amplitudes are the means of the 8 channels. Based on the
figure both models could capture the main temporal dynamics of the P300. The
epochs from WGAN have higher amplitudes, while the epochs from EEGWave
are more compressed. In our experiments, we observed that spatial convolutions
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Figure 3: Amplitude of the averaged epochs.

were more effective in keeping the temporal characteristics regarding amplitude
magnitude than point-wise convolutions.

Figure 4 presents the mean spectral amplitudes of the averaged epochs over
8 channels. WGAN introduced more frequency artifacts into the epochs than
EEGWave. We hypothesize that these artifacts are results of the interpolations
and transposed convolutions as the authors observed similar effects in their work
(as well as in [6]). Epochs from EEGwave have much more similar spectral
characteristics to the real ones.

Figure 4: Spectral amplitudes of the averaged epochs.

Figure 5 presents the averaged epochs with 8 channels. The top plots show
that both WGAN and EEGWave could model similar dynamics compared to
the real one, although the signals from EEGWave seem to be more accurate.
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Figure 5: Averaged P300 containing signal epochs on 8 channels with top plots.
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6 Conclusion

In this work, we examined a novel type of generative model, specifically the
denoising diffusion probabilistic model, for the EEG signal synthesis task. A
DDPM is based on a Markov chain that makes it possible to generate syn-
thetic EEG signals from latent noise variables. We have shown that the P300
component containing EEG signals can be generated with DDPMs not only on
single-channel but also on multi-channel. Furthermore, the quality of the gen-
erated signals proved to be better in our framework and setup than that of a
GAN at the cost of inference time.

In future work, other architectural design options should be explored to
achieve better amplitude magnitudes in the time domain. Attention modules are
commonly used in other generative models, therefore these can be the starting
points in addition to spatial convolutions. The optimization of the noise schedule
can also result in EEG epochs of better quality. The inference speed is much
slower compared to WGAN. DDIMs [24] and knowledge distillation are possible
solutions for achieving better inference speeds. The application of these methods
is left to our future work.
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