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Abstract—Bacterial Foraging Optimization (BFO) is an effec-
tive metaheuristic algorithm that has been widely applied to the
real world. Despite outstanding computing functionality, BFO
algorithms can barely avoid premature convergence induced by
easy trapping in local optima. To improve the computing func-
tionality of BFO algorithm, this paper presents an improved BFO
algorithm that employs a novel step-length evolution strategy.
Also, the improved BFO algorithm adopts Lévy flight strategy
proposed in LPBFO and the conjugation strategy proposed
in BFO-CC. By combining the three strategies associatedlly,
the proposed Conjugated Novel Step-size BFO algorithm(CNS-
BFO) strikes an outstanding balance between exploitation and
exploration, effectively mitigating the problem of premature
convergence in BFO algorithm. Experimental results comparing
with several similar algorithms on 8 benchmark functions are
conducted to demonstrate the efficiency of the proposed CNS-
BFO algorithm.
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I. INTRODUCTION

Metaheuristic algorithm, the so-called nature-inspired algo-
rithm, has drawn considerable attention since inception. Be-
cause of its efficacy in tackling optimization and computation
problems (especially multi-minimum and multi-constraints
problems), metaheuristic algorithm is among the most popular
algorithms for researchers. Compared to traditional algorithms,
metaheuristic algorithm is much more capable of solving
discontinuous and multi-modal problems[1]. Due to its advan-
tages in solving realistic problems, metaheuristic algorithm is
incessantly studied and modified to get better performance.

Metaheuristic algorithms are generally divided into single-
solution metaheuristic algorithms and population-based meta-
heuristic algorithms in terms of the way they search for best
solutions[2]. single-solution metaheuristic algorithms center
on improving single candidate solution. A typical example of
single-solution metaheuristic algorithms is simulated anneal-
ing algorithm(SA)[3], which simulates the heating and cooling
process to control temperature and energy in order to find
approximate global optima. Population-based metaheuristic
algorithms center on improving multiple candidate solutions.
The most popular population-based metaheuristic algorithms
include particle swarm optimization algorithm (PSOA)[4],
bacterial foraging optimization algorithm (BFOA)[5], ant
colony optimization algorithm (ACOA)[6], genetic algorithm
(GA)[7], differential evolution algorithm (DEA)[8] and so on.

The nature-inspired algorithms are derived from natural phe-
nomena and biological behaviors. For example, particle swarm
optimization algorithm[4] is inspired by swarm characteristics
of birds seeking foods, and genetic algorithm[7] simulates the
process of natural selection and genetic construction.

Performance of population-based metaheuristic algorithms
is mostly determined by the process of exploitation and
exploration[9], which focus on converging to best candidate
solution and adding diversification separately. Exploitation
is introduced to perform local search so as to speed up
convergence, while usually leading to premature convergence
in which the algorithm can get stuck in local optima. In
contrast to exploitation, exploration centers on seeking various
solutions by broadening search area to provide sufficient
candidates for the solution, while usually slowing down the
convergence and wasting computational efforts[10]. Lopsided
emphasis on either search process can lead to the inefficacy of
an algorithm, and hence researchers have exerted enormous ef-
forts in balancing the exploration and exploitation in proposed
metaheuristic algorithms[11].

Bacterial foraging optimization algorithm is proposed by
Passino in 2002[5]. Under observation, researchers found that
Escherichia coli approach nutrients by steps and that the
bacteria in unhealthy conditions can be starved and die. Based
on the observation, Passino constructed four basic process-
chemotaxis, swarming, reproduction, and elimination in the
original BFO algorithm. Since the inception of BFO algorithm,
it is broadly employed in all sorts of fields, including robotic
cells[12], power generation[13], sensor network[14], image
segmentation[15], and so on.

Numerous novel BFO algorithms have been proposed in
recent years. Hybridization of BFO algorithm with other meta-
heuristic algorithm attracts much attention from researchers.
Researchers proposed hybrid BFO algorithms combined with
all sorts of algorithms, such as GABFO[16], BSO[17], and
DEBFO[18]. By taking full advantages of other algorithms,
hybrid algorithm shows extraordinary advantages in specific
fields, such as PID controller tunings[19], economic dispatch
problems[20] and so on.

Structure modifications of BFO are also proposed by
researchers. To reduce computational time, researchers
have re-designed construction of BFO algorithm, such as
structure-redesign-based BFO (SRBFO) proposed by Niu



et al. in 2014[21], and IMBFOA proposed by Ocaña in
2016[22]. Recently, coevolutionary structure-redesigned-based
BFO is modeled by Niu et al. and achieve satisfactory
performance[23]. The redesigns of algorithm structures effec-
tively save computational efforts of BFO algorithm.

Apart from hybridization of other algorithms and the modifi-
cation of structure, researchers integrate communication mech-
anism in BFO algorithms. Social learning mechanism is incor-
porated in classical BFO algorithm by Yan et al. in 2012[24];
adaptive comprehensive learning mechanism (ALCBFO)[25]
is introduced by L. Tan et al. in 2015 in order to keep balance
between exploitation and exploration; novel chemotaxis and
conjugation strategies (BFO-CC) are employed by Yang et
al. in 2016[26] and contribute to the improvement of BFO
algorithm. Recently, Pang B et al. proposed LPBFO[27],
which incorporates Lévy flight to the reconstruction of BFO’s
step-size, making progress in addressing the limitation of
premature convergence in BFO algorithm.

Besides, chemotaxis step improvement is thoroughly con-
sidered by researchers. Adaptive bacterial foraging optimiza-
tion algorithm (ABFO) is proposed by Dasgupta et al. in
2009[28]. Linear decreasing BFO (BFO-LDC) and non-linear
decreasing BFO (BFO-NDC) are modeled by Niu et al.
in 2011[29]. Gravitation search strategy is combined with
chemotactic step by Zhao et al. in the proposed effective BFO
(EBFO)[30].

Despite huge efforts exerted by researchers, deficiencies of
premature convergence and slow convergence speed remain
unsolved. In order to further the improvement of BFO al-
gorithm, the paper proposes a Conjugated Novel Step-size
BFO algorithm(CNS-BFO) which employs a novel chemotaxis
step-size evolution strategy. Moreover, the proposed CNS-BFO
algorithm employes conjugation strategy proposed in BFO-CC
algorithm and Lévy flight strategy proposed in LPBFO, signif-
icantly ameliorating the deficiency of premature convergence,
improving the computational efficiency of BFO algorithm.

The rest of the contents is organized as the followings.
Classical BFO algorithm is illustrated in section two. In
section three, the paper introduces the proposed Conjugated
Novel Step-size BFO algorithm. Experiments are conducted
to test the performance of the CNS-BFO algorithm in section
four. Finally, section five concludes the proposed CNS-BFO
algorithm.

II. CLASSICAL BFO ALGORITHM

Bacterial foraging optimization proposed by Passino[5] in
2002 simulates behaviors of E. coli bacteria. To summarize,
the classical bacterial foraging optimization algorithm con-
sists of three basic behaviors: chemotaxis, reproduction, and
elimination-dispersal. Subsections written below will demon-
strate how the three behaviors work.

A. Chemotaxis

E. coli bacteria move towards places of abundant nutri-
ents by rotating flagella. The rotation of flagella can be
in either clockwise direction or counterclockwise direction.

Counterclockwise direction rotation pushes the bacteria to
move towards nutrients, while clockwise direction leads to
bacteria’ s tumbling away from the current position for search-
ing nutrients. By combining both actions, bacteria perform
chemotaxis to approach nutrient.

Suppose bacterium i is denoted as θi(j, k, l), in which j
denotes the j-th chemotaxis, k denotes the k-th reproduction,
and l denotes the l-th elinimation& dispersal, the behaviors of
the i-th bacterium can be demonstrated as follows:

θi(j + 1, k, l) = θi(j, k, l) + C(i)
∆(i)√

∆T (i)∆(i)
(1)

where C(i) denotes the step size of chemotaxis and ∆(i)
denotes random direction vector in which elements are within
[−1, 1] .

If the health status gets better after tumbling, bacteria
will keep on swimming for several steps, in order to further
approach optimal solutions.

B. Reproduction

After the stage of chemotaxis, each bacterium is assigned
with different health status. The health status is evaluated by
the summation of the fitness of each bacterium. The lower the
total fitness value, the healthier the bacterium. The function
for calculating health status can be demonstrated as follows:

Jhealth =

Nc∑
j=1

J(i, j, k, l) (2)

where Nc denotes the number of chemotactic behaviors and
J is the evaluated value of the position of the i bacterium at
the k reproduction and the l ellimination. In classical BFO
algorithm, only the first half bacteria ranked by health status
can survive, with their offsprings supplant the other half of
bacteria. Reproduction is designed to strenghthen local search
ability of BFO while maintaining stable population of bacteria
population. The function for reproduction can be demonstrated
as follows:

θi+Sr(j, k, l) = θi(j, k, l) (3)

where Sr is half of the population size.

C. Elimination & Dispersal

For fortifying the ability of global search, classical PSO
algorithm introduces the mechanism of elimination & dis-
persal. After stages of chemotaxis and reproduction, bacteria
will encounter death induced by adverse environment by a
possibility Ped. Bacteria will be dispersed to random positions
within the search area. By introducing stage of elimination
& dispersal, the diversity of bacteria increases and results in
stronger global search ability.

III. CONJUGATED NOVEL STEP-SIZE BFO ALGORITHM

A. Lévy Flight Step Length Strategy

Levy distribution, proposed by Lévy Paul[31], is a special
inverse-gamma distribution, whose formula can be expressed
as Ps = s−λ, in which s is a step size and λ is between



1 and 3. Subject to Lévy distribution, Lévy flight is a sort
of random moving which can generate frequent small step
sizes and occasional larger step sizes for bacteria. The traits of
Lévy flight makes bacteria move with ununiformed step size,
strengthening BFO’s ability of exploitation and exploration
at the same time: on the one hand, frequent small step
sizes fortify the local search ability of bacteria, whereby the
exploitation ability of the algorithm can be improved. On
the other hand, occasional larger steps prevent bacteria from
over concentrating on exploiting the current position, guiding
bacteria to a broader search area, whereby the exploration
ability of BFO can be strengthened.

The paper adopts the Lévy flight strategy modified by Bao
Pang et al. in 2018[27]. The formula of the adaptive step-size
is as follows:

C
′
(i) =

α

t(i)
|s| (4)

where α is a parameter for controlling the strength of change
in step-size, t(i) is the number of chemotaxis the i bacterium
has gone through. As bacterium experiences more chemotaxis,
the step size will dwindle as t(i) gets larger, and hence
bacteria can become more concentrated on exploiting the
current position. s is calculated by:

s =
u

|v|
1
β

(5)

in which β is a random number between 0.3 and 1.99. u and
v are two normal random variables with means equal to zero
and with variances set as σu and σv respectively. σu and σv
is calculated as follows:

σu =
Γ(1 + β)sin(πβ2 )

Γ[ (1+β)2 ]2
β−1
2 β

(6)

σv = 1 (7)

B. Novel Step Evolution Strategy

In the original BFO algorithm, chemotaxis step length is
set fixed for each bacterium. Fixed step size saps bacterium’s
strength to exploit, resulting in a greater possibility of falling
into local optima. To address the limitation, the other step-size
evolution strategy is applied here. After bacteria and their step
sizes are ranked and reproduced, step lengths of bacteria will
be updated by the following equation:

C
′′
(i, k + 1) = C(i, k + 1)b (8)

C(i, k+ 1) = [C
′′
(i, k+ 1)−C(i, k+ 1)] · (1− 1

lk + 1
) (9)

where b denotes a p×1 vector, p is the dimension of bacteria.
This novel step-size evolution strategy is introduced to make

bacteria move adaptively and efficiently. As moving step sizes
significantly decide the ability of bacteria to search glocal
optimum, careful moving can dramatically improve the odds
of finding the global optimum. The novel step length evolution
strategy allows bacteria to move with longer step sizes in the

beginning, and make them budge at later stage. Combined with
Levy-flight step length strategy, the adaptive moving strategy
efficiently mitigates the problem of trapping into local optima.

C. Conjugation Strategy

Conjugation strategy proposed in BFO-CC algorithm by
Cuicui Yang et al. in 2016[26] is a novel strategy that simu-
lates the process of transferring genetic material among crea-
tures. The proposed BFO-CC algorithm introduces conjuga-
tion mechanism to bacteria, constructing a message exchange
mechanism by which diversity of bacteria can be improved. By
this way, conjugation strategy enhances bacteria’s capability
of searching for glocal best. In BFO-CC algorithm, each
bacterium chooses another bacterium θi

′

and a conjugation
point pt randomly. The formula for conjugation mechanism is
given as follows:

θinew = θi(j, k, l) + a · [θi
′

(j, k, l)− θi(j, k, l)] (10)

where a is a p-dimension random vector in which the values of
the components pt to pt+L−1 are random numbers uniformly
distributed from 0 to 1, with the rest of components being 0. L
indicates the length of exchange of dimensions. By taking the
conjugation strategy, the bacterium is mutated to learn from
other bacteria, whereby avoid premature convergence.

D. Process of The Improved BFO Algorithm

Pseudocode for the improved BFO algorithm is shown in
algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

To prove the efficiency of the proposed CNS-BFO algo-
rithm, it is compared with other sorts of heuristic algorithms:
GA[7] and PSO[4]. Besides, as a variant of BFO algorithm,
CNS-BFO is compared with standard BFO[5] and several
popular BFO variants: BFO-LDC[29], BFO-NDC[29], and
BCO[32] algorithms. To make the comparison fair, algorithms
are assigned with the same initialization positions and recom-
mended parameters are adopted for comparison algorithms.
The population sizes for all BFO algorithms are set to 50.
The total number of FEs is set to 10,000 for 15-D func-
tions. All the algorithms are tested for ten times in all the
benchmark functions. Parameters of BFO algorithms are set
as follows: Nc = 1,000, Nre = 10, Ned = 2, Ped = 0.25, Sr
= S

2 , n = 30, s = 2, and g = 2. For CNS-BFO algorithm,
additional parameters are set as follows: α = 1,000, β=1.5,
pcon=0.2, Nn=30, L=2. To demonstrate the effectiveness of
CNS-BFO, 8 popular benchmark functions are employed to
test its performance. Benchmark functions include one basic
unimodal function(f1), 6 basic multimodal function(f2 − f7),
and 1 2D multimodal function(f8). Benchmark functions used
in evaluating algorithms are shown in Table.I. The test results
are demonstrated in Fig.1 and Table.II. Note that the best
results have been marked with boldface. Also, the standard
deviations of the best value in each run are bracketed.



Algorithm 1 Pseudocode of CNS-BFO Algorithm

1: Initialize parameters d, S,Ns, Nc, Nre, Ned, Nn, Sr, ped,
pcon, α, β, δv, δu, u, v, e, L

2: for l = 1,2,...,Ned do
3: for k = 1,2,...,Nre do
4: for j = 1,2,...,Nc do
5: for i = 1,2,...,S do
6: Set t = j + (k − 1)Nc + (l − 1) · rand(p, 1)
7: Compute fitness function J i

8: Set Jlast = J i

9: Tumble with Levy-Flight step size computed by
equation (4)

10: Move. Compute J i

11: Swim:
12: while m < Ns do
13: if J i is smaller than Jlast then
14: Update θi

15: else
16: Stop
17: end if
18: end while
19: Conjugate:
20: Select a bacterium randomly
21: if rand < pcon then
22: Choose a conjugation point pt, in which 1 ≤

pt ≤ pt− L+ 1
23: Compute θnew using equation (10)
24: if J i < Jlast then
25: θi = θnew
26: end if
27: end if
28: end for
29: end for
30: Compute the health status J i for the i-th bacterium
31: Sort bacteria by health status
32: for j =1 to Sr do
33: split
34: for e = 1 to Nn do
35: Update Ci,k+1 using equation (8) and (9)
36: end for
37: end for
38: end for
39: for m = 1,2,...,S do
40: Eliminate each bacterium if rand < ped
41: end for
42: end for

According to the test graphs, it is noticeable that the pro-
posed CNS-BFO algorithm tremendously outperforms other
algorithms on nearly all the benchmark functions. In the all test
functions, CNS-BFO algorithm seeks out optimal global con-
siderably faster than all the other algorithms. Moreover, global
optima found by CNS-BFO algorithm is significantly better
than other comparison algorithms. In the last test function, the

performance of CNS-BFO algorithm is as good as that of PSO
algorithm. Overall, CNS-BFO algorithm effectively mitigates
the problem of premature convergence, whereby dramatically
improves the efficiency of BFO algorithm.

TABLE I: Benchmark Functions

Function Name n SD fopt

f1 Sphere 15 [−100, 100]n 0
f2 Rastrigin 15 [−5.12, 5.12]n 0
f3 NCRastrigin 15 [−5.12, 5.13]n 0
f4 Schwefel 1.2 15 [−100, 100]n 0
f5 Schwefel 2.22 15 [−500, 500]n 0
f6 Ackley 15 [−32.768, 32.768]n 0
f7 Griewank 15 [−600, 600]n 0
f8 Brain2D 2 [−500, 500]n 0.397887

V. CONCLUSION

Conjugated Novel Step-size BFO algorithm(CNS-BFO) is
proposed to improve the performance of BFO algorithm.
Improvements lie in the way of constructing a novel step
evolution strategy and incorporating both Lévy flight step-
size strategy and conjugation strategy. By modifying the
moving strategy and introducing a learning mechanism, CNS-
BFO strikes a balance between exploitation and exploration,
whereby efficaciously improves the limitation of premature
convergence in BFO algorithms. Benchmark functions tests
are implemented to compare the performance of the CNS-BFO
algorithm with those of other algorithms. The experimental
results indicate that the proposed CNS-BFO algorithm signif-
icantly enhances the performance of BFO algorithm in both
avoiding premature convergence and accelerating convergence.
As a result, the proposed CNS-BFO algorithm will contribute
to the perfection of the bacterial foraging optimization algo-
rithm and even other metaheuristic algorithms.
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