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Abstract— The fog-assisted Internet-of-Things (IoT) is gaining 

interest due to its large number of devices, which can lead to 

more duplicate data transmission over the internet. This paper 

proposes task distribution and secure deduplication over 

Cluster-based IoT, implementing four layers: IoT Devices 

Layer, Fog Layer, Cloud Layer, and Service Layer. In the IoT 

devices layer, devices sense air pollutants and are 

authenticated to the cloud server using Edwards Curve-based 

Elliptic Curve Cryptography (EC-ECC). Adaptive Rewards 

Optimized Deep Reinforcement Learning (ARO-DRL) is used 

for cluster-head selection at the first layer. In the fog layer, 

SHA-3 is proposed for duplicate verification, and the Emperor 

Penguin Optimization Algorithm is used to choose the best fog 

node. Packet Scrutinization Algorithm is used in the fog node 

to analyze packet features, including DDoS attack packets. A 

proxy server is deployed between the cloud server and fog node 

for queue modeling. In the cloud layer, a hybrid cloud 

environment is used to protect organizations' data in a highly 

secure manner. IoT devices are divided into sensitive and 

nonsensitive devices, with sensitive data encrypted using RC6, 

AES, and Fiestel encryption schemes. The overall environment 

is assumed to be decentralized, with security invoked to IoT 

devices to provision Quality of Service (QoS) by avoiding 

attackers. Experiments were conducted and analyzed using 

NS3 with Java programming, and simulation results showed 

improvements in average latency, user satisfaction, network 

lifetime, energy consumption, and security strength. 

Keywords— Fog Assisted Internet of Things, Task Allocation, 

Secure Deduplication, Secure Clustering, and NS3 with Java, 

and Blockchain. 

I. INTRODUCTION 

The Industrial Sector is a prime application area for Internet 
of Things (IoT) technologies, particularly wireless sensor 
actuator networks (WSAN) and wireless sensor networks 
(WSN). These technologies aid in sensitive information 
management, such as energy efficiency, air quality 
management, fault prediction, resource prediction, and 
product planning. Key WSN-IoT applications include smart 
city, smart home, smart transportation, disaster management, 
smart grids, energy control systems, smart healthcare, urban 
terrain tracking, smart agriculture, and industrial IoT. 
However, preserving energy efficiency without affecting 
communication among IoT entities remains a challenge due 
to the involvement of numerous nodes, communication 

among multiple entities, multi-hop communication, dynamic 
topology of the network, and lack of optimized network 
design. Despite these challenges, diverse research has been 
conducted to manage the massive growth of IoT devices and 
sensors. 

This research paper addresses the challenges in Wireless 
Sensor Networks (WSN-IoT) and proposes novel 
methodologies to achieve energy efficiency in an IoT-Fog-
Cloud connected environment. Factors affecting energy 
consumption and network lifetime include idle listening, 
node isolation, data transmission, overhearing, redundant 
data, collisions, and frequent retransmissions. Security is a 
challenging task in the IoT environment, and integrating IoT 
with the cloud offers storage of security credentials. IoT 
devices are designed with low power and resources, making 
them efficient and suitable for integrating with a cloud 
platform [1]. 

IoT-enabled cloud provides ubiquitous computing for easier 
and faster access, and this integration is studied in the four-
tier architecture of IoT devices, network devices, edge 
computing, and cloud layer. The elasticity of the cloud has 
enabled integration for multiple applications [2]. IoT aims to 
provide efficient communication for connected devices, but 
proper maintenance is necessary to minimize attacker 
participation. Conventional algorithms and mechanisms were 
presented to resolve security issues in the developed system. 
Fig. 1 depicts the IoT-enabled cloud environment, which is 
also subject to attacker involvement, as attackers can be of 
any type and their goals may vary. Conventional algorithms 
and mechanisms were presented to resolve security issues 
and protect the system against attackers [3]. 

 
Fig. 1. IoT-integrated Fog Cloud. 

The integration of IoT environments requires security 
measures. Fog computing is an emerging paradigm that uses 
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large fog nodes to reduce user delays and send remaining 
traffic to cloud data centers. Optimization methods like 
weighted sum, hierarchical, and trade-off methods have been 
proposed to optimize this model, aiming to reduce 
processing time and improve user experience [4]. Fog 
computing offers heterogeneity, online analytics, large-scale 
IoT applications support, and easy cloud interplay [5]. It is 
particularly useful in healthcare, air pollution monitoring, 
smart grids, smart homes, and smart vehicles. Air pollution, 
caused by harmful gases, dust/fumes, and odors, affects 
human life, animals, and plants [6]. Fog computing can help 
mitigate these issues by detecting and addressing pollutants 
like nitrogen dioxide, carbon dioxide, carbon monoxide, 
methane, hydrogen sulphide, hydrocarbons, and ozone [7]. 
Air pollution monitoring systems often face a significant 
amount of duplicate data, which can increase storage 
capacity and efficiency. To address this, a data deduplication 
scheme is needed to eliminate redundant or similar data. IoT 
devices submit this data to cloud servers for storage [8-9]. 
Fog computing is used for task allocation, reducing latency, 
communication overhead, and communication cost. 
Clustering is an important process in fog-enabled WSNs, 
with Cluster Head (CH) selected on each cluster and other 
nodes in the cluster members (CMs) [10-11]. CH functions 
by controlling random selection, exploiting heterogeneity 
energy thresholds to avoid residual energy nodes, optimizing 
the minimum distance between CHs and fog nodes [12]. Fog 
computing increases energy efficiency and reduces overhead 
by aggregating sensing data and forwarding computing 
results to cloud servers. It is crucial for task allocation and 
low latency in real-world environments. Data confidentiality 
is also important, as large amounts of data can cause attacks. 
Cloud servers extract this information and provide on-
demand services to end-users, but they do not guarantee data 
security and integrity [13-14]. The fog-assisted cloud 
environment for IIoT applications uses blockchain 
architecture, which includes blocks with transaction lists, 
hash values, and timestamps [15]. The ProvChain scheme is 
introduced to ensure tamper-proof records. A privacy-
preserving model for secure data storage is proposed using 
blockchain, and blockchain-based forensic architecture is 
used for vehicular network environments to analyze accident 
cases [16]. However, cloud servers outsource non-sensitive 
information to end-users, which does not guarantee data 
security and integrity as shown in Fig. 2. 

 
Fig. 2. Blockchain structure. 

This paper presents a new innovation in remote monitoring 
and control system design for applications, combining 
Industrial IoT, fog nodes, and cloud environments. The paper 
addresses issues in integrating these technologies, focusing 
on task allocation and secure deduplication. IoT devices 
serve both sensing and actuation functions, while cloud 
systems store historical information and enable remote 
monitoring of sensing environments. Fog nodes act as faster 
gateways in Industry 4.0. 

1.1 Motivation & Contributions 

This paper discusses the challenges in fog-enabled IoT, 
focusing on the large latency issues faced by devices due to 
cloud server issues. IoT devices are designed for various 
applications, including connecting multiple sensors and 
actuators, making real-time data decisions, monitoring and 
reporting status, and analyzing large-scale data. However, 
security is a common concern in IoT, especially when 
transferring sensitive data. The paper highlights the need for 
improved security measures in IoT to address these 
challenges. 

This paper proposes three key solutions for efficient 
authentication of IoT devices: multi-factor authentication, 
lightweight algorithms, blockchain technology, energy-
efficient clustering, and scheduling tasks via queue 
management. These solutions aim to reduce resource 
consumption and improve the system's effectiveness. The 
main contributions include registering all IoT devices to a 
cloud server using Edwards Curve Elliptic Curve 
Cryptography (EC-ECC), clustering similar devices using 
Adaptive Rewards Optimized Deep Reinforcement Learning 
algorithm, implementing secure data deduplication using 
SHA-3, and selecting the optimal fog node using Emperor 
Penguin Optimization Algorithm (EPO). A proxy server is 
deployed in the fog layer, scheduling packets into real-time 
and non-real-time classes using the M/M/C model. Data 
packets are encrypted using lightweight encryption 
algorithms such as RC6, Fiestel, and AEs before 
transmission to the cloud server. The experimental results 
show that the proposed scheme outperforms previous works 
based on QoS metrics such as average latency, energy 
consumption, user satisfaction, network lifetime, and security 
strength. The proposed scheme is expected to reduce 
computations in the system for device authentication.  

 

 

Table 1 describes the notations and descriptions of the 
symbols and acronyms in the paper. 



TABLE 1. NOTATIONS AND DESCRIPTIONS. 

 

1.2 Paper Organization  

The paper presents a literature review on fog assisted IIoT, 
presents major problem statements, briefly explains the 
proposed system design and architecture, and presents each 
new idea in an organized manner. Experimental settings for 
the proposed system design are presented, and comparisons 
between the proposed and previous approaches are evaluated. 
The paper concludes with a summary of the paper's 
conclusion and future work. 

II. REVIEW OF RELATED WORKS 

2.1 Clustering in IoT / WSN 

A hyper round policy-based clustering scheme has been 

proposed to improve network lifetime by controlling 

frequent re-clustering using a fuzzy inference system [18]. 

Random nodes are chosen, and cluster formation follows 

TDMA slots. The re-clustering process is triggered by the 

fuzzy inference system to improve network lifetime. 

However, frequent clustering and reclustering increase 

energy consumption due to frequent control packet exchange. 

A fuzzy power optimized clustering algorithm was proposed 

to reduce energy consumption in Wireless Sensor Networks 

(WSN) [19]. The optimal clustering is selected based on 

multi-parameter iteration, considering factors like centralism 

and distance with the base station. This approach relies 

heavily on node density, which is not suitable for energy-

aware networks. In REECHD, the CH selection is performed 

based on probability value as follows in equation (1). 

𝐶𝐻𝑝𝑟𝑜𝑏 = max (
𝐶𝑝𝑟𝑜𝑏

𝐾
(

𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝐸𝑚𝑎𝑥

+ 𝐼𝑊−1) , 𝑃𝑚𝑖𝑛)      (1) 

 

Here the leader election probability (𝐶𝐻𝑝𝑟𝑜𝑏) is computed 

in terms of predefined initial probability (𝐶𝑝𝑟𝑜𝑏), minimum 

probability value a CH must have (𝑃𝑚𝑖𝑛), residual energy 

(𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙) and the constant value (𝐾). 

The whale optimization algorithm, which is self-adaptive, 

has been implemented for optimal CH selection in large-

scale networks, but its effectiveness may not be suitable for 

distant nodes [20]. The authors analyze SAWOA's self-

adaptive whale optimization algorithm using benchmark 

optimization techniques. They propose an optimal clustering 

algorithm for lifetime maximization (LiMCA) in WSN-IoT, 

balancing energy consumption among whales and forming 

clusters. However, non-optimal CH selection increases the 

number of rotations and re-clustering. Numerous 

optimization techniques focus on cluster formation. 

2.2 Task Allocation & Security Schemes  

A multi-criteria-based decision-making approach for task 

allocation in several nodes, implemented at edge nodes or 

presented in peer topology. The scheme follows two 

decisions for optimal task allocation, addressing high energy 

consumption due to high latency. Spatial crowdsourcing 

assisted task owners-based task allocation and data 

aggregation are proposed through fog computing, which 

allows servers to collect sensed information from mobile 

users and distribute and aggregate data in a privacy-aware 

manner [21]. IIoT-based fog computing technology is 

presented for smart factory applications, with hierarchical 

fog servers-based deployments categorizing sensed data into 

high priority and low priority. High priority requests are 

scheduled first due to emergency/urgent demands, and a 

workload assignment algorithm is used to offload high traffic 

load to higher fog tiers. However, end-to-end delay is large 

due to the large number of workloads at fog tiers [22]. 

Adaptive configuration of fog nodes over IIoT environments 

offers IoT services such as imminent failure detection and 

automatic monitoring control, improving industrial system 

performance [23]. Lyapunov optimization and parallel Gibbs 

sampling methods are proposed for adaptive fog node 

configuration, but not adopted for real-time applications [24]. 

Smart resources partitioning is proposed in fog assisted IIoT 

environments, using Zipfs law to compute the relationship 

between popularity ranks of computing control layer and 

data processing layer [25]. Hybrid approaches like 

reinforcement learning and fuzzy logic algorithms are 

proposed to minimize latency for healthcare applications 

over IoT environments, but their limitations include high 

service latency in the application layer [26-27]. Security is 

also essential for fog-enabled cloud environments, with 

matrix-based key agreement and lightweight authentication 

models being proposed for communication and verifying 

multiple party identities. The Intelligent Transportation 

Control System (FSF-ITLCS) framework addresses various 

security attacks, but overall computation time is high [28]. 

2.3 Smart Applications in IoT 

Air pollution is a significant concern that affects the health of 

humans, animals, and plants. It has various applications in 

areas such as roadside pollution monitoring, industrial 

perimeter monitoring, site selection for reference monitoring 

stations, and indoor air quality monitoring [29]. In recent 

years, there has been a focus on air pollution monitoring 

systems in Wireless Sensor Networks (WSN), which use 

data from sensors to analyze and compute air quality indexes 

(AQIs) to visualize air quality locations efficiently [30]. One 

such system is the IoT-based 3D air quality sensing system, 

which is designed as a real-time, power-efficient, and fine-

grained architecture with four layers: sensing layer (data 

collection), transmission layer (bidirectional communications 

support), processing layer (data processing and analysis), and 

presentation layer (provide graphical interface for users) [31-

32]. However, data security is not considered in these 

systems [33]. To protect the air quality monitoring system 

framework, authors have focused on data integrity and 

security for low-cost air quality sensors used to collect sensor 

Notation Description 

𝒅𝒏 IoT devices in the system 𝑛 = 1,2,3, … … 

𝑰𝑫𝒏 Identity of each IoT device  𝑛 = 1,2,3, … … 

𝒅𝒕 Type of IoT device 

𝑹 Random number 

𝒔𝒌𝒏 Secret key of each IoT device  𝑛 = 1,2,3, … … 

𝑳𝒏(𝒙,𝒚) Location of each IoT device 𝑛 = 1,2,3, … … 

𝑷𝒊𝒅 Generated new identity 

𝑬𝑲𝑭(𝑩) Encrypted PUF biometric 

𝑷𝒌𝒏 SRAM-PUF based public key of IoT device 

𝑷𝒓𝒏 SRAM-PUF private key IoT device 

𝑺𝒊(𝑫𝒏) Signature with data structure of 𝑛𝑡ℎ device 

𝒃𝒊𝒅(𝒅𝒏) Block identity of 𝑛𝑡ℎ device 

𝑻𝒃(𝒅𝒏) Block timestamp of 𝑛𝑡ℎ device  



information and manage pollutants under three cases: Sensor 

in Physical Possession, Sensor MAC address knowing 

(geographical information) environment, and Automatic air 

pollution monitoring in large-scale environments [34]. Fog 

computing has been proposed to tackle mobile crowdsensing 

challenges by ensuring data confidentiality and task 

allocation based on user mobility. Fog nodes detect and 

remove replicate data using BLS-obvious pseudorandom 

number function and chameleon hash function, which hide 

users' information to anonymous mobile users. However, this 

approach may not be suitable for applications requiring large 

volumes of data, as task allocation/assignment is not 

effective, and the process is time-consuming [35]. A new P-

SEP based fog computing model was proposed, which 

reduces energy usage and increases network lifetime. 

However, the clustering process is not effective, as it 

randomly selects adjacent fog nodes without properly 

investigating and implementing optimal fog node allocation 

[36]. Adaptive block compressed sensing was proposed, 

which is based on sensor-cloud data acquisition methods 

over fog environments but has drawbacks such as being large 

complex and not lightweight [37]. Additionally, it causes 

high energy utilization in fog nodes due to virtual cluster 

formation in the lower WSN layer. In IIoT, fog-enabled 

cloud environments are considered, but IoT devices are 

vulnerable and insecure to several threats [38]. Secure KNN 

was proposed to ensure data confidentiality, but it is 

expensive and has high data searching time. Furthermore, 

KNN is not suitable for dense areas or processing large 

amounts of data, particularly in real-world dataset processing. 

The proposed scheme addresses these issues and improves 

air pollution monitoring systems [39]. 

III. PROBLEM FORMULATION 

Fog computing faces challenges in secure task management 

due to the consumption of resources and performance 

degradation caused by processing unauthorized user tasks. 

Task scheduling and queue management in fog environments 

are based on limited parameters and conventional FIFO 

policy, leading to large waiting times. Task offloading is 

handled using either task or fog-oriented metrics, but both 

are necessary for better efficiency. The particle Swarm 

Optimization (PSO) algorithm was proposed to enhance 

energy efficiency, but it leads to higher time consumption for 

routing and clustering sensor nodes in the network. 

Hierarchical data fusion methods for smart healthcare 

consider biosensor readings for patient health status 

monitoring, but environmental factors also play a pivotal role. 

CPE-based analysis is not suitable for real-time analysis due 

to user differences and parameters. Task scheduling and 

offloading are performed based on task priority, but 

offloading decisions by gateways increase time and 

complexity. Queues follow FIFS policy, increasing waiting 

time and slack time. Priority values in the LP queue are 

given high priority, but increasing priority affects 

computational time for HP tasks. Energy-efficient offloading 

in fog-cloud environments for IoT applications depends on 

task characteristics and fog node characteristics. The Firefly 

algorithm is inefficient in local search and is not suitable for 

selecting optimal fog for offloading. The optimal solution is 

affected by the firefly control parameters, which have large 

parameters to be tuned. 

IV. SYSTEM MODELING AND DESIGN 

4.1 System Design and Architecture 

The proposed model for air pollution monitoring consists of 

five entities: IoT devices, fog nodes, trusted authority, proxy 

server, and cloud server. The system consists of four layers: 

IoT Devices Layer, Fog Layer, Cloud Layer, and Service 

Layer. In the IoT devices layer, sensors and actuators are 

deployed and sensed data. Clusters are formed based on node 

residual energy level, node degree, and distance between 

nodes for fast data transmission. The Fog layer allows for 

verification of data duplication or not, supported by hash 

generation. In the Cloud Layer, a proxy server maintains a 

scheduling list for packets transmitted from IoT devices, 

encrypting and storing them based on sensitiveness. In the 

Service Layer, sensors information is provided to authorized 

IoT users. 

4.2 IoT Devices Layer 

The study uses IoT devices to measure air pollutants 

concentration in the environment and forward data to a cloud 

server for processing. It considers air polluting and 

healthcare-related sensors like CO, NOx, SO2, PM, CO2, 

and VOC. The devices are authenticated using the Edwards 

Curve-based Elliptic Curve Algorithm (EC-ECA). 

a) Authentication 

Trust Authority is a crucial component in intrusion 

prevention systems, ensuring secure access to cloud user 

data by generating One Time Signatures for each legitimate 

user. Cloud users store their data using the Elliptical Curve 

Cryptography (ECC) method, a public key encryption 

technique based on elliptic curve theory. ECC generates 

keys through the properties of the elliptic curve equation, 

generating keys faster than traditional methods. Each user 

has a pair of private and public keys, with the public key 

used for encryption and signature verification and the 

private key for decryption and signature generation. The 

ECC algorithm uses shorter keys for higher security levels. 

The general equation (2) of Edwards Curve E is given as 

 𝑦2 =  𝑥3 + 𝑎𝑥 + 𝑏                                                              (2) 

Where a, b – Real Numbers, x, y- Points on Elliptical Curve 

E. 

Edwards equation is a non-singular equation that requires a 

non-singular curve, with characteristic coefficients 'a' and 'b' 

determining points on the curve. It is explained as shown in 

equation (3), 

∆= 4𝑎3 + 27𝑏2                                                           (3) 

Where, the value ≠ 0 

Usually, Points on the curve are presented with x and y 

components similar to Euclidian coordinate system. 

Equation (4) represents and considers one exception that is 

one point in the infinity curve representation. 

𝐴 = (
𝑎𝑥

𝑏𝑦

)                                                                       (4) 

The Elliptic Curve Cryptographic Algorithm (ECC) uses a 

pseudo code to generate a public key using a standard 

generator P and a random number S. This key is then used 

for encryption and signature verification, with the primary 

goal of protecting user data from intruders. The proposed 

system model for task allocation and secure deduplication 



via FaCIIoT is presented, with the system architecture 

depicted in Fig. 3. 

 
Fig. 3. System Model. 

An elliptic curve is a non-singular projective algebraic curve 

which is presented over some field k with genus 1 and a 

specified point O. k does not have characteristic 2 or 3, this 

will be a smooth plane cubic curve with the point at infinity, 

and the curve as points satisfying the equation (5) and (6). 

𝑦2 =  𝑥3 + 𝑎𝑥 + 𝑏                                                              (5) 

Where a & b are discriminant 

∆= −16(4𝑎3 +  27𝑏2 )                                                    (6) 

 

The group law on an elliptic curve is exploited for key 

selection in elliptic curve cryptography is depending upon 

the elliptic curve as an abelian group with points as 

elements. The group law is pointing additions which add 

two points P and Q. 

b) Cluster Head Selection and Formation 

Sensors are initially grouped based on three parameters: 

node residual energy, node degree, and distance between 

nodes. Each cluster has one CH and multiple members, 

allowing communication within and between CHs for data 

transmission. 

i. Residual Energy (RE) 

It represents the current energy level of sensor nodes. As 

assumed, all nodes have same initial energy (IE) and the 

energy level is varied over time period. For node 𝑁𝑖 the RE 

is computed as shown in equation (7). 

𝑅𝐸(𝑁𝑖) = 𝐼𝐸 − 𝐷𝐸                                              (7) 
Where 𝑫𝑬 represents the dissipated energy value over time 

period. 

ii. Node Degree(D) 

 It defines the connectivity of sensor nodes in the 

constructed graph. It is computed in terms of number of 

relative neighbors a node has in the graph 

iii. Distance with sink node (𝐝𝐢𝐬(𝐍𝐢, 𝐒𝐢𝐧𝐤) 

It represents the distance between 𝑵𝒊  and sink node. It is 

computed in terms of Euclidian distance as shown in 

equation (8). 

       𝒅𝒊𝒔(𝑵𝒊, 𝑺𝒊𝒏𝒌)= √(𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐               (8) 

 Where (𝒙𝟐, 𝒚𝟏) and (𝒙𝟐, 𝒚𝟐) represent the coordinates of 𝑁𝑖 

and sink node respectively. 

iv. Hop count (HP) and mobility (M) 
HP defines the number of hops between 𝑁𝑖 and sink node. 

Mobility of the node defines the current mobility speed of 

the node. 

v. Link Stability (LS) 
 It defines the stability link between 𝑁𝑖 and sink node. It can 

be expressed as shown in equation (9) 

𝐿𝑆 =
𝑅𝑎𝑑𝑖𝑢𝑠

𝑑𝑖𝑠(𝑁𝑖 , 𝑆𝑖𝑛𝑘)
                                                (9) 

Where the radius represents the communication range of  𝑁𝑖 

vi. RSSI 
It is computed in terms of power presented in the radio 

signal received by 𝑁𝑖 from sink node. It computed as shown 

in equation (10), 

𝑅𝑆𝑆𝐼 = 𝑃0 (
𝑑𝑖𝑠(𝑁𝑖  , Sink)

𝑑𝑖𝑠0

)

𝜎

                    (10) 

 

Where 𝑃0  represents the reference power received at the 

distance 𝑑0  and σ denotes the path loss component. By 

using all seven metrics leader nodes are selected. At first, 

the weight value is computed for all nodes based on the RE, 

D, 𝑑𝑖𝑠(𝑁𝑖  , j) as shown in equation (11), 

W(Ni) = RE + (
D

dis(Ni,j)
)                                        (11) 

The nodes are sorted in descending order based on weight 

value. Then, the threshold value (µ) is computed based on 

the average weight value as shown in equation (12), 

𝜇 =  
(𝑊(𝑁1) + 𝑊(𝑁2) + ⋯ + 𝑊(𝑁𝑛))

𝑛
            (12) 

The nodes which have weight value higher than the 

threshold (𝑊 > 𝜇) are considered for second stage. Thus, 

the number of nodes to be processed in the next stage is 

reduced based on the weight value. 

In CH, Deep Reinforcement Learning is introduced 

completely avoid energy consumption issue. Deep 

reinforcement learning is a new algorithm, which learns and 

interacts with real-world environment. It is based on the 

finite Markov decision process (f-MDP). A set of entities 

used in this algorithm is as follows, S is the set of states, A 

is the set of actions, the state transition probability 

𝑝(𝑆′|𝑠, 𝑎). It is a probability distribution function on state 

space for a given action a for state s, the discount factor is 

∝ , which range from 0 and 1, Reward 𝛾 = (𝑆 ∗ 𝑎)  is 

computed using state and action (Set of Real Numbers), To 

get in easier, it is assumed that the rewards are discrete, Use 

f-MDP when S and A are finite variables. 

Assume that the current state 𝑠 and action 𝑎 in environment 

is given, then the probability distribution function for next 

state 𝑠′ is computed and also the next reward R is expressed 

as shown in equation (13), 

follows, 

 

𝑝(𝑆′|𝑠, 𝑎) =  𝑃𝑟(𝑆𝜏+1 = 𝑆′. 𝛾𝑡+1 = 𝑟|𝑆𝑇 = 𝑠. 𝐴𝑇 = 𝑎)(13) 

 

The state transition probability is computed according to the 

reward function (if 𝛾 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) and it is expressed in 

equation (14), 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) =  ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
𝑟∈𝑌

                                     (14) 



 

An expected reward is computed for the current 𝑠 and 𝑎 as 

indicated in equation (15), 

𝑟(𝑠, 𝑎) = 𝐸[𝛾𝑇+1|𝑆𝑇 = 𝑠, 𝐴𝑇 = 𝑎]

=  ∑ 𝑟 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
𝑠′∈𝑆𝑟∈𝑌

        (15)  

Then the states value functions were defined, which is 

described by specific policies since future 𝑟 is based on the 

agent current actions. In following, the state value function 

and action value function are computed. 

State value function: 

The policy 𝜋  for the state 𝑠  of value is computed by the 

expected return, which is represented as 𝑉𝜋(𝑆) , which is 

computed towards the current state 𝑠 . It is computed in 

equation (16) and (17), 

           𝑉𝜋(𝑆) =  𝐸𝜋[𝐺𝑇|𝑆𝑇 = 𝑠]                                   (16) 

𝑉𝜋(𝑆) =  𝐸𝜋 [∑ 𝑟𝑘𝛾𝑇+𝐾+1|𝑆𝑇 = 𝑠
𝑡−𝑇−1

𝑘=0
]                (17) 

Action Value function: 

The policy 𝜋 for the action 𝑍 of value is computed by the 

action 𝑎 in state 𝑠 , which is represented as 𝑍𝜋(𝑠, 𝑎). It is 

computed in equation (18) and (19), 

𝑍𝜋(𝑠, 𝑎) =  𝐸𝜋[𝐺𝑇|𝑆𝑇 = 𝑠, 𝐴𝑇 = 𝑎]                                  (18)   

𝑍𝜋(𝑠, 𝑎) =  𝐸𝜋 [∑ 𝑟𝑘𝛾𝑇+𝐾+1|𝑆𝑇 = 𝑠, 𝐴𝑇 = 𝑎
𝑡−𝑇−1

𝑘=0
]   (19)    

 

The IDP agent uses a deep reinforcement learning algorithm 

to update each switch stage based on two metrics: Flow 

Duration and Packet Inter Arrival Time. Flow duration is the 

time difference between the first and last packets, while 

inter packet arrival time is the time difference between two 

succeeding data packets. The hidden layer computes the 

weight value and present state of all switches based on input 

variables. The IDP agent aims to increase the reward 

obtained from the environment, with the reward function 

being the major objective function. The IDP agent consists 

of two goals: assigning benign packet-in messages to 

switches and avoiding malignant packet-in messages to 

minimize attack traffic percentage. 

 

c. Secure Deduplication 

 

After authorization of nodes to TA, cluster formation and 

cluster head selection. The node separates the received data 

based on the Region ID and then similarity is estimate. 

Jaccard similarity for computing the similarity between data 

was used. The formation of the Jaccard similarity is given in 

equation (20), 

𝑆𝑖𝑚(𝑃1, 𝑃2) =  
|𝑃1 ∩ 𝑃2|

|𝑃1 ∪ 𝑃2|
                                                   (20) 

 

The Jaccard method determines similarity between data 

packets P1 and P2. If the similarity value is less than 

𝑆𝑖𝑚(𝑃1, 𝑃2), the data packets are dropped, and the sensor 

node ID is included in the packet to notify the sensor that 

has sensed and provided similar data. If the similarity value 

is higher, both packets are transmitted to the Cloud 

Computing Hub (CH) by intermediate sensor nodes. The 

computation of similarity is processed by intermediate 

nodes, reducing time consumption. Once redundant data is 

eliminated, the received data is transmitted to CH, ensuring 

no redundant data packets are present. SHA-3 is used for 

duplication verification, ensuring data integrity while 

transmitting data packets to the cloud server through fog 

nodes. SHA-3 takes arbitrary input data packets and outputs 

messages digest or hash values. For a hash generation, 512 

bits are used and the properties of SHA-3 are depicted in 

Table 2. 

 
TABLE 2. PROPERTIES OF SHA-3 

 

After the generation of hashes, CH sends DSC request to 

near and optimum fog nodes. Fog node checks whether this 

data packet is received or not. If packets at stored in 

temporary storage of fog nodes, it will immediately send 

DSC response. Then CH will store the file to a cloud server 

via fog nodes. 

4.3 Fog Layer  

In this layer, fog server selects optimum (nearest) fog node 

via fog server using EPC algorithm, which follows the 

procedure of Fast Optimization algorithm. 

a) Optimum Fog Node Selection 

The EPC optimization algorithm was developed and it is a 

first-in-its-kind approach to IoT framework improvement. It 

combines swarm and nature-inspired behavior, organizing 

penguin behavior through thermal radiation and spiral 

movement. The algorithm detects an optimal solution in the 

fourth iteration, reducing mining system execution time. 

The algorithm takes input from fog nodes and their current 

status, creating an initial inhabitant's array of the emperor 

penguin. It computes the fitness function for each node 

based on current residual energy, distance, and buffer state. 

Each penguin in the EPC algorithm estimates its own heat 

radiation, spiral movement, and attractiveness. This 

approach significantly reduces the execution time of the 

mining system. In addition, it also determines the new 

position for the next moving direction.  

Table 3 shows the pseudocode process for optimizer 

operation. 
 

TABLE 3. OPTIMUM FOG NODE SELECTION. 

Pseudocode for Optimizer Operation 

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 ∶ Optimum fog node 

𝐄𝐧𝐬𝐮𝐫𝐞: < buffer state, energy & distance >∷ Optimizer function 

𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐞 population P =  [P1 … Pn]; 
For All P ∈  [P1 … Pn] do 

𝐂𝐨𝐦𝐩𝐮𝐭𝐞 → fitness f(i)for Pi; 
If (f(i) > f(j)) 

δ (Pi) ← f(i); 
End If; 

End For 

Emit (Kn → P, Vn → δ(P)) 

End 

 

SHA-3(512 bits) 

Parameters Variants 

Block size (bits) 576 

Capacity 1024 

Word size (bits) 64 

Rounds 24 

Operations AND, OR, NOR, and NOT 

Security strength 256 

Output size (bits) 512 



 

The heat radiation (𝑃ℎ𝑟) for each penguin is computed using 

equation (21) 

𝑃ℎ𝑟 =  𝑠𝑎ℰ𝜎𝑇𝑎    
4                                                                      (21) 

Here, the 𝒔𝒂  represents the surface area, 𝑇𝑎  denotes the 

absolute temperature, σ denotes the Stephan Boltzmann 

constant and 𝓔represents the emissivity. The attractiveness ( 

𝑃𝐴) of each penguin is estimated with aid of the upcoming 

equation (22), 

𝑃ℎ𝑟 =  𝑠𝑎ℰ𝜎𝑇𝑎    
4 𝑒−µ𝑑                                                            (22) 

Where, 𝜇 denotes the attenuation co-efficient and 𝑑  
represents the distance between the two linear resources. 

The penguin spiral movement is computed as follows in 

equation (23) and (24), 
𝑥ℎ = 𝑎 cos 𝜃𝑘  𝑒𝑏𝜃ℎ                                                            (23) 

 

 𝑦ℎ = 𝑎 sin 𝜃𝑘  𝑒𝑏𝜃ℎ                                                            (24) 

 

Here, 𝑥ℎ and 𝑦ℎ indicates 𝑥 and 𝑦 components of the  
penguin position ‘h’. The spiral moving behaviour of the  
penguins in the EPC algorithm provides the searching speed  
effectually. With the use of aforesaid expressions, EPC  
estimates the fitness function for each penguin which is  
signified as follows in equation (25), 

 

𝑓(𝑖) =   ∑ 𝑃ℎ𝑟𝑃𝐴𝑥ℎ𝑦ℎ

𝑛

𝑖=1
                                             (25) 

Using the above equation, fitness function is estimated for 

each penguin which defines the optimal value with less 

amount of time. Since, it converges fastly with optimal 

solution compared to the other traditional algorithm like 

PSO, GA and so on. 

b) Packet Scrutinization in Fog 

The fog server is crucial in the intrusion detection phase, 

collecting packets from IoT devices at different locations. 

Fog nodes monitor packet behavior and assign threshold 

values to each node. Due to dynamic device movement, 

packet traffic arises in the fog environment. When packet 

arrival exceeds the threshold, fog nodes migrate from heavy 

traffic to idle nodes. The fog node with packet algorithm is 

shown in Fig. 4. 

 
Fig. 4.  Fog node with packet scrutinization algorithm. 

The proposed packet scrutinization algorithm analyzes 

collected packets by fog servers based on packet arrival 

time, packet flow, packet count, and confidence level. The 

algorithm considers packet arrival time, packet flow, trust 

value, and packet counting based on headers. The 

confidence level is the frequency of attribute appearances in 

packet flows, while packet count is determined by the 

number of packets in the sequence. The confidence level is 

calculated based on single attribute and pair of attributes 

follows as in equation (26), 

 

 

 

(i) Confidence level for single attributes, 

𝐶(𝐴𝑖 = 𝑎𝑖,𝑗) =  
𝑁(𝐴𝑖 = 𝑎𝑖,𝑗)

𝑁𝑛

                                 (26) 

where, i = 1,2,3…n and j = 1,2, 3... mi 

 

(ii) Confidence level for attribute pairs, 

𝐶(𝐴𝑖1 = 𝑎𝑖1,𝑗1, 𝐴𝑖2 = 𝑎𝑖2,𝑗2)

=
𝑁(𝐴𝑖1 = 𝑎𝑖1,𝑗2, 𝐴𝑖2 = 𝑎𝑖2,𝑗2)

𝑁𝑛

(27) 

where, i1 = 1,2,3…n, i2 = 1,2,3…n, and j1 = 1,2, 3. .m1, j2 =  
1,2,3...m2, N – the number of attributed that are considered 

to overcome the folding attacks and DDoS attacks, 𝑁𝑛-Total  
number of packets on packet flow in one time interval. 

 𝐴𝑖 − 𝑖𝑡ℎ  attribute in packet, 𝑁(𝐴𝑖1 = 𝑎𝑖1,𝑗2, 𝐴𝑖2 = 𝑎𝑖2,𝑗2) 

Number of packets whose attribute Ai1 has the value ai1, j1 

and Ai2 422 has the values ai2, j2 423 in packet flow in one 

time interval (t). Using above equation, calculate the 

confidence level for every packet. If confidence level of the 

packet is low, then the corresponding packet is discarded. 

Fog node only allows the packets which have high 

confidence level than threshold level. Fig. 5 shows the clear 

view about the working process of packet scrutinization 

algorithm. 

 
Fig. 5. Flowchart for packet scrutinization algorithm. 

Table 4 shows the clear view about the working process of 

packet scrutinization algorithm. 
TABLE 4. PROCESS OF PACKET SCRUTINIZATION ALGORITHM. 

Algorithm for Packet Scrutinization 

Step 1: Start 
Step 2: Examine the arrival time of every packet from all cloudlets 



Step 3: Classify the packets based on arrival time and its flows 
Step 4: Check packets according to its header 

Step 5: Count the packets according to its header 

Step 6: Check confidence level if (packet > threshold level) 
Accept packet 

Else 

Discard packet 
Step 7: End 

Thus, using this algorithm, we can easily detect and remove 

the initial flooding attack and port scanning attack.  

4.4 Cloud Layer  

A proxy server is deployed before cloud servers, 

constructing queues for data forwarded by IoT devices and 

acting as the primary node between the fog node and cloud 

server. 

a) Queue Modeling  

 

After classification, the normal packets are further processed 

into fog node whereas the intruder packets are deleted from 

the fog node. In order to provide efficient processing to the 

packets, the research work introduces a queue modeling 

named M/M/C which performed based on the packet 

prioritization. Usually queuing system is characterized with 

four basic components such as Queue Discipline, Arrival 

rate, Service Channel and Service Rate The proposed 

queuing model estimates the arrival time based on packet 

entering into environment. Then service channels are 

specified with multiple s that can estimate different packets 

and service rates are defined as that multiple packets are 

executed with different Proxy Servers at a time. The 

prioritization of the packet is based on the type of rules 

which are represented with processing time and arrival time. 

Fig. 6 illustrates the proxy server allocation process 

performing by the 𝑀/𝑀/𝐶 queue modelling. 

 
Fig. 6. 𝑀/𝑀/𝐶 queue modelling. 

Fig. 7 shows the working process of 𝑀/𝑀/𝐶 queue 

modelling. In this method, multi-users and multi-servers are 

involved to allocate the packets in specific virtual machine 

for further execution.  

 
Fig. 7. State space diagram of 𝑀/𝑀/𝐶 Queue modelling. 

Where 𝜆 refers to packet arrival time and 2µ represents the 

service rate of the packets. Our proposed queue model has 

multi-user packets (∞) and multi-server (C) “𝑀/𝑀/𝐶” and 

we propose four priorities such as A, B, C and D which is 

depicted as follows:  

(i) Class 1: When a packet has short waiting time 

and its request type is urgency then packet gets 

the first priority on queue for processing.  
(ii) Class 2: A packet with long waiting time and 

has urgency request then we furnish the second 

priority for the packet.  
(iii) Class 3: A packet with short waiting time and 

has no urgency gets the third priority for 

processing.  
(iv) Class 4: A packet with long waiting time and 

has no urgency for processing, then we furnish 

the fourth priority for the packet.  
Based on these conditions, the research work allocates the  
normal packets to the virtual machine to further execution 

that improves the QoS of our proposed system.  

The processing steps of queue modelling (Table 5), involves 

allocating normal packets to the virtual machine for further 

execution, thereby improving the Quality of Service (QoS) 

of the proposed system. 
TABLE 5. PROCESSING STEPS OF QUEUE MODELLING 

Steps for Queue Modeling 

Step 1: Start 

Step 2: Proxy Servers 

Step 3: if (P is RT: (Urgency && WT-short) 
PT: “Class 1” 

End if  

Step 4: if (P is RT: Urgency && WT-long) 
PT: “Class 2” 

End if 

Step 5: if (P is RT: No Urgency && WT-short) 
PT: “Class 3” 

End if  

Step 6: if (P is RT: No Urgency && WT-Long) 
PT: “Class 4” 

Step 7: 𝑃 → 𝑄 

Step 8: 𝑄 →Proxy Servers 

Step 9: End 

Where, P is the packet, Q represents FIFO queues, RT 

specifies request type; WT denotes waiting time and PT  

illustrates priority type (1, 2, 3, and 4) of packets. 

b) Sensitive & Non-Sensitive Data Encryption  

Data encryption is the first security process, dividing 

message blocks into two sub-blocks, one encrypted with 

AES and the other using RC-6 algorithm. This process 

converts plain text into cipher text using keys. The proposed 

encryption splits sensor node texts into two blocks, each 128 

bits long, for secure storage. 

First Block 
Let 𝑝𝑖 [0: N/2-1] and 𝑃𝑖 [N/2: N-1] be the two divided block  
for the plain text, here N is not an integer number which has 

a fraction. From this division the first block N/2 is encrypted  
using AES as mentioned above. The size of this block is 128  
bits and having the generated key K and length L as in 

equation (28) and (29). 

𝑝𝑖 = ∑ 𝐵𝑖

𝑖=
𝑛
2

−1

𝑖=0
0 ≤ 𝑖 ≤

𝑛

2
− 1                        (28) 

𝐶𝑖 = 𝑒𝐴𝐸𝑆(𝐾, 𝐵𝑖)                                                  (29) 

Where the plain text of the first block is converted into 

cipher text that is denoted as 𝐶𝑖 and 𝑒𝐴𝐸𝑆 is the encryption 

function that is the function used in AES algorithm. This 

encryption is followed with the processing of next 128-bit 

block. Here the entire data packets are split into equal halves 

for easier and faster processing of data. This division 

enabled to provide security of the data.  



Second Block 
For the second block of the plain text, followed by RC-6  
encryption to secure the data. The second block 𝑃𝑖 [N/2: N1]  
using RC-6 encrypts the data at faster speed with the growth  
of the security level as shown in equation (30) and (31). 

𝑝𝑖 =  ∑ 𝐵𝑖

𝑖=𝑛=1

𝑖=𝑛/2
   

𝑛

2
≤ 𝑖 ≤ 𝑛 − 1                              (30) 

𝐶𝑖 = 𝑒𝑅𝐶6(𝐾, 𝐵𝑖)                                                                 (31)     

 
The second 128-bit block is encrypted using two cipher 

texts for single plain text, providing security. The Fiestel 

algorithm is used for non-sensitive data encryption, splitting 

the data into two parts to improve security. This symmetric 

technique is used in cryptography to construct block ciphers, 

making encryption and decryption operations similar. The 

proposed Fiestel algorithm splits the data into two parts, 

enhancing the security of the encrypted data. The Fiestel 

encryption scheme encrypts data at a fast rate, with multiple 

rounds of handling raw data, each with a substitution 

process monitored by the permutation process. The process 

is virtually identical in structure, ensuring efficient and 

secure data storage. 

Let 𝔽  be the round function of the Fiestel cipher and 𝐾0, 𝐾1, 
… 𝐾𝑛 be the sub-keys for the rounds 0, 1...n respectively. At 

first, data 𝑆𝑖𝑏 is split into two equal pieces that are 𝑆𝑖𝑏𝐿 and 

𝑆𝑖𝑏𝑅 . For each round r=0, 1…. n compute, as indicated in 

equation (32) and (33) 
𝑆𝑖𝑏𝐿(𝑟 + 1) =  𝑆𝑖𝑏𝑅(𝑟)                                                 (32) 

𝑆𝑖𝑏𝑅(𝑟 + 1) =  𝑆𝑖𝑏𝐿(𝑟) ⨁ 𝔽(𝑆𝑖𝑏𝑅 , 𝐾𝑖)                      (33) 

Where ⨁ represents the XOR operator and 𝐾𝑖 represents the  
key value. Then the cipher text attained as 𝑆𝑖𝑏𝑅+1 and 𝑆𝑖𝑏𝐿+1. 

The one of the advantageous of Fiestel encryption scheme is 

round function is doesn’t need to be invertible. 

4.5 Services Layer  

In this layer, IoT data are retrieval after the verification of  
user’s authentication. If registration is successful for users in  
TA, then the searching result is provided for users.  
The procedure of Blockchain  
Step 1: IoT user/ device requests for a transaction from  
Blockchain.  
Step 2: A new block that denotes the particular transaction 

is created.  
Step 3: Then the particular block will be disseminated to all  
the other nodes participating in the network.  
Step 4: Further all the nodes that received the transactions,  
will validate the currently received transaction.  
Step 5: After verification, the particular block is included 

into the Blockchain  
Step 6: later the transaction is verified and executed.  
Using asymmetric cryptography of elliptic curve, pair of 

keys is generated as public key and private key for IoT 

device. This PoW is a blockchain authentication method 

followed in blockchain. This consensus algorithm is more 

helpful in supporting resource constrained devices. The 

use of asymmetric cryptography in blockchain enables to 

provide incorruptible data storage in the blockchain 

network. The use of PoW is approximately 200 times faster. 

The blocks in the blockchain are authenticated using PoW 

that is represented in Fig 8. The nodes present in the 

network are enabled to record the distributed ledger and so 

the transaction information of the nodes can be followed 

properly.  

 

 

 

 

Each block is authenticated and for every successful 

validation the node will be credited increment in its trust 

values. Here, the use of asymmetric ECC for key generation 

with 256 bits attains 128 bits in security level which is 

effective and it sustains to be protected in the system. 

 
Fig. 8. PoW Consensus. 

V. RESULTS AND DISCUSSION 

In this section we well described the simulation part and 

also discussed the performances of the proposed scheme 

using several metrics. Table 6 shows the system 

configuration parameters, Table 7 indicates network 

environment parametric values, and Table 8 shows packet 

information parameters. 
TABLE 6. SYSTEM CONFIGURATION 

Name Description 

Simulation Tool NS-3.26 

Development toolkit JDK-1.8 

Operating System Ubuntu 14.04LTS 

Development Platform NetBeans 8.0 

Processor Pentium (R) Dual-core CPU 

E5700@3.00 GHs 

Installed memory 2GB RAM 

 

TABLE 7. NETWORK ENVIRONMENT 

Simulation Parameters Values 

Number of nodes 100 IoT devices 

Number of fog nodes 5 

Number of cloud server 1 (Hybrid cloud) 

Number of simulation tasks 10, 20, 30, 40, and 50 

Number of smart gateways 1 

Simulation area 1000m x 1000m 

Task arrival rate [0,5] 

Simulation time 100 seconds 

Initial energy of a node 5J 

Traffic type CBR 

Packet interval 0.1s 

Learning rate 0.2 
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TABLE 8. PACKET INFORMATION 

Mobility Configuration Metrics 

Mobility of Mus 

Mobility model of MU  

Interval Time 

300ms 
Random way point model 

0.1s 

Packet Configuration metrics 

Packet interval 

Bit rate 

100ms 
2Mbps 

Attack Configuration metrics (PPP-Packets per second) 

Attack rate (per Attacker)  High(pps)  1000 

Low (pps) 20 

Cumulative Attack Packet Rate High(kbps) 1000-1200 

 Low(pps) 6-70 

Cumulative Traffic Rate High (mbps and 

pps) 

3.6 

Low (mbps and 

pps) 

6-70kbps 

Protocol Configuration Metrics 

Protocol Used  

Latency (processing) 

IPv6 

10𝜇s 

 

Deep Reinforcement Learning Configuration Metrics 

Reward Rate 0.9 

Batch Size 100 

Learning rate 0.001-0.1 

The number of hiden layer 3 

The number of nodes at input 

layer 

2 

 
 

The number of nodes at output 

layer 

2 

 
 

Activation function ReLU and Linear 

 

Optimizer ADAM 

  

5.1 Simulation Environment 

This section presents a simulation of a proposed model 

using NS3 with Java, an open-source Java-based network 

simulator developed by the CLOUDS laboratory at the 

University of Melbourne. NS3 is useful for resource 

management in IoT, edge computing, and fog computing 

paradigms. The simulation involves a large number of IoT 

devices and fog nodes. The proposed Cloud-IoT 

environment includes IoT devices, data users, gateway 

devices, cloud servers, and TA. IoT devices sensing their 

surroundings and encrypting data using lightweight 

encryption. Encrypted data is stored in a cloud server via 

gateway devices, with TA providing security by allowing 

only authorized users to access the data. Fig. 9 shows 

simulation details while Fig. 10 shows, blockchain details in 

simulation environment. 

 
Fig. 9. Simulation details. 

  
Fig. 10. Blockchain details



 

5.2 Case Study: Remote Health Monitoring System  

The proposed scheme for Remote Health Monitoring is 

tested to address the issue of duplicated data transmission in 

fog environments, particularly in industries and vehicles 

near cities. This duplication leads to poor quality of service 

and severe cloud service issues. Healthcare information 

must be kept private for storage and retrieval, reducing 

environmental harm. The fog-enabled IoT system uses 

sensors to monitor environment-based and healthcare-

related information, with a simulation topology for 

healthcare monitoring in IoT shown in Fig. 11. 

 
 

Fig. 11. Blockchain Simulation Topology in health monitoring.

In this work we categorized air pollutants into three classes 

that are given below:  

i. Primary air pollutants 

Generally, it is produced from several gas sensors include 

carbon dioxide, sulfur oxides, nitrogen oxides, carbon 

monoxide, volatile organic compounds, radioactive 

pollutants, etc 

ii. Secondary air pollutants 

It is generated by communications made from primary air 

pollutants include ground level ozone, peroxyacetyl nitrate, 

smog, etc.  

iii. Others 

It covers minor hazardous and organic persistent air 

pollutants. Table 9 and Table 10 show list of IoT sensors 

used in this paper for monitoring remote healthcare 

monitoring system and their functionalities. Sensors are 

MQ-135, MQ-2, MQ-3, Buzzer sensor, LM-35, MiCS4514, 

MiCS2614, and DHT11 are deployed for measuring 

environment information in this area. Here, the body sensor 

nodes are deployed in IoT layer and the aggregated sensed 

data is transmitted to data processing unit. The body sensors 

can be heartbeat sensor, temperature sensor, pressure sensor, 

oxygen level sensor and motion sensor. Then the processed 

data is delivered to doctors, caretakers, ambulance and 

relatives based on severity level. This intelligent healthcare 

system mitigates all related issues in conventional 

healthcare such as delay, inaccurate system and so on. 

 

 
TABLE 9. SENSORS AND FUNCTIONALITIES 

 

 

 

 

 

 

Environment Sensor Type Functionality 

MQ-135 gas sensor Measuring air quality 

MQ-2 gas sensor To detect CO, Alcohol, 

Smoke/Propane, H2, LPG, and 

CH4 

MQ-7 gas sensor Detecting CO, and suited sensing 

concentrations CO in the air 

MQ-3 gas sensor Detect Benzine, Hexane, CO, 

Alcohol 

Buzzer Giving alarm to inform about 

unhealth Air or Exceeding 

chemical values on each sensor 

LM-35 sensor For measuring temperature inputs 

MiCS 4514 For measuring NO2 and CO 

MiCS 2614 For measuring O3 

DHT11 For measuring Humidity and 

temperature 



TABLE 10. SENSORS AND FUNCTIONALITIES 

 

5.3 Evaluation Measures 

 

The integration of IoT, fog, and cloud computing paradigms 

significantly impacts average latency, user satisfaction, 

network lifetime, energy consumption, and security 

strength. 

 
i. Average Latency 

 It is the time required to respond to the user’s given request 

at a time. The average latency is defined as the sum of time 

taken to process all requests given by the IoT device as 

shown in equation (34), 

 

𝐴𝑙 = min +
max

2
                                                                     (34) 

Where 𝐴𝑙 is the average latency and its unit is milliseconds 

(ms). It is computed on minimum and maximum amount of 

time. Minimum time is zero and the maximum time is the 

time require for processing single request. 

ii. User Satisfaction 
It is a metric that finds how well a service response from the 

fog/cloud will satisfy user’s requirement. It is not same for 

users with requests specific service. Hence it differs based 

on user’s service request arrival time and distance to the 

fog/cloud servers as shown in equation (35), 

𝑈𝑆 = 𝑆𝑅𝑇 + 𝑆𝐼𝑇 + 𝑆𝑄                                                             (35) 

 

Where 𝑈𝑠 is the user satisfaction, 𝑆𝑅𝑇 is the service 

response time, 𝑆𝐼𝑇 is the service-initiated time, and 𝑆𝑄 is 

the service quality. 

iii. Network Lifetime 

It is defined as the amount of time during which the sensor 

network is fully operative. It can be defined as the 

maximum duration of operational time of the network while 

the network performs specific task. It is expressed in (36), 

 

𝑁𝐿 =  
𝐸𝑂 − 𝐸[𝑈𝑈]

𝑃 + 𝛿𝐸[𝑅𝑒𝑝]
                                                            (36) 

 

Where 𝐸0 represents the initial energy consumed by all 

sensor nodes, 𝐸[𝑈𝑈] is expected wasted energy, 𝐸[𝑅𝑒𝑝] 

represents the expected reporting energy and 𝛿 is the 

average sensor reporting rate. The network lifetime is 

measured in time duration or in number of rounds. 

iv. Energy Consumption 
 

It is defined as the amount of energy consumed to perform 

processes such as sensing, data transmitting and data 

receiving. Energy consumption of the network is 

represented as follows in (37) 

 

𝐸𝐶(𝑁) =  ∑ [𝐸𝑇𝑥(𝑁𝑖) + 𝐸𝑅𝑥(𝑁𝑖) + 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔(𝑁𝑖)] (37)
𝑛

𝑖=1
 

 

Where 𝐸𝑇𝑥, 𝐸𝑅𝑥, 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 energy consumed for 

transmission, reception and sensing by a sensor node 𝑁𝑖. 

v. Security Strength 

 It is essential to analyze the designed system for task 

allocation and deduplication. It ensures the user satisfaction 

and supported for massive data storage at cloud servers. It is 

computed by the following (38). 

𝑆𝑠𝑡 = 𝐾𝑠 + 𝑀𝑠 + 𝐸𝑡 + 𝐷𝑡                                                  (38)   
 

Where 𝑆𝑠𝑡 is the security strength, 𝐾𝑠 is the key size, 𝑀𝑠 is 

the message size, 𝐸𝑡 is the encryption time, and 𝐷𝑡 is the 

decryption time. 

vi. Detection rate (D)  

The detection rate (D) is defined as the percentage of 

correctly detected attack records of the intrusion detection 

system. It also defined as the ratio between numbers of 

attack detected in the system to the number of attacks 

appeared in the system as in (39). 

D =  
Number of detected attacks

Number of attacks present
 X 100%                   (39) 

 

Detection rate in terms of TP and FN is shown in (40) 

D =  
TP

(TP + FN)
                                                                   (40) 

 

vii. Speedup ratio 

The speed up ratio is defined as that supports increasing the 

performance between two nodes. Here the average 

execution time take for training the data is considered as 

speed up ratio (SR) as shown in (41). 

SR =  
Time taken for intrusion detection

Overall number of packets
 x 100% (41) 

 

viii. Throughput 

Throughput (T) is defined as the rate that packet finishes 

successful processing of packets. It is also defined as the 

ratio between the number of successfully executed packet to 

the total number of packets in the intrusion detection system 

as shown in (42). 

T =  
Numof successfully processed packets

Total number of packets
 x 100% (42) 

 

ix. Packet loss ratio 

Packet loss ratio (PLR) is defined as the ratio between the 

numbers of packets lost to the total number of packets sent 

in the intrusion detection system as shown in (43). 

PLR =  
Number of lost packets

Number of sent packets
 x 100%               (43) 

 

5.4 Comparative Analysis  

 

As earlier mentioned, different performance evaluation 

measures are evaluated and compared with four previous 

Body Temperature type functionality 

ECG sensor For measuring heart rate 

EEG sensor To detect brain actions and recording 

nerves activities 

Glucose sensor Detecting the glucose content in the 
body 

Heart rate sensor Detects heart rate accurately 

Body pressure sensor Detects blood pressure level 

Temperature sensor Measuring temperature inputs 

EMG sensor Measuring muscles information 

Insulin Pump Measuring pumps 



works, namely, task allocation and secure deduplication (TA 

& SD) [40], fog-based energy efficient routing protocol 

(FEER) [41], adaptive block compression sensing (ABCS) 

[39], and secure data storage and searching in IoT 

(SDSSIIoT) [42]. 

a) Average Latency 

IoT applications like fire accidents and healthcare require 

high latency constraints of 10s of ms. By enabling data 

collection and processing features like clustering and 

classification at the device layer or fog layer, latency can be 

reduced, as shown in Fig 12. 

 

 
Fig. 12. Average latency vs. No. of devices. 

The proposed fog layer in the cloud layer aims to minimize 

latency for IoT devices, compared to previous mechanisms 

like TA&SD, FEER, and ABCS. The average latency for 

twenty IoT devices is 2.7ms, a minimum compared to 

previous works' 8.9ms, 10.54ms, and 11.54ms. TA&SD 

requires minimum average latency due to avoiding 

redundant copies in the fog layer. The proposed scheme uses 

EPO for optimal fog node selection and SHA-3 (512bits) for 

hash generation, eliminating duplicate data in the fog layer. 

This approach reduces waiting time for data transmission 

and collection. 

b) User Satisfaction 

The system's performance is attributed to the optimal 

service provided to users, achieving the best QoS, which is 

determined by each QoS parameter. Fig. 13 shows the 

performance of user satisfaction with the number of IoT 

devices is crucial, as it impacts the performance of QoS 

parameters. 

 
Fig. 13. User satisfaction vs. No. of devices. 

The proposed scheme offers low service response time and 

high service quality, with an average satisfaction rate of 0.5, 

surpassing TA&SD (0.21) and SDSS-IIoT (0.17). However, 

the lower satisfaction rate in TA and SD is due to improper 

cloud server management and increased latency. 

 

c) Network Lifetime  

The network lifetime is the maximum operating time of 

nodes in a network for a specific task. The proposed 

protocol increases the network lifetime by up to 100 nodes, 

as the number of sensor nodes increases. The network 

lifetime metric is inversely proportional to energy 

consumption, and reducing energy consumption impacts the 

network lifetime. The proposed scheme reduces energy 

consumption and improves network lifetime. In FEER, 

network traffic is reduced, scalability is improved, and 

latency is minimized, but network lifetime is less due to 

routing among fog nodes. In contrast, TA&SD has less 

network lifetime due to poor fog node selection, which leads 

to high energy consumption at IoT devices. The authors did 

not focus on optimal fog node selection, which is generally 

resource-constrained. Overall, the proposed protocol 

improves network lifetime and reduces energy consumption 

in IoT devices. Improve network lifetime in fog assisted 

IIoT is a challenging task. In this paper, the network lifetime 

for comparison was evaluated. Fig 14 shows the 

performance of the network lifetime with respect to number 

of IoT devices. 

 
Fig. 14. Network lifetime vs. No. of devices. 

c) Energy Consumption 

Fog-enabled IoT applications face high energy consumption 

due to energy constraints in sensors, devices, and actuators. 

To address this, energy-efficient tasks like clustering can be 

proposed, which reduces mathematical computations and 

requires minimal energy consumption in IoT devices. Fig. 

15 illustrates the performance of energy consumption based 

on the number of devices. 

 
Fig. 15. Energy consumption vs. No. of devices. 

The proposed scheme for task allocation and secure 

deduplication in FaCIIoT has significantly reduced energy 

consumption compared to previous works like TA&SD and 

FEER. FEER's ACO-based routing consumes more energy 

and lacks assurance for the shortest path. TA&SD verifies 

data deduplication at fog nodes randomly, requiring large 



computations. The proposed scheme's average energy 

consumption is 0.26J, compared to 1.5J and 1.21J for 

TA&SD and FEER, respectively. The system architecture, 

which includes best fog node selection and cluster 

formation, results in less energy consumption. 

d) Security Strength 

The study examines the security of real-time applications, 

particularly in healthcare monitoring in IIoT. It compares 

the performance of a proposed scheme with previous works 

based on key size, message size, encryption, and decryption 

time. The results show that the proposed scheme has better 

security strength as shown in Fig. 16, compared to previous 

works like TA&SD and SDSS-IIoT, which were found to 

have less security strength due to ineffective security 

algorithms as illustrated in Table 11. 

 

 
Fig. 16. Security strength vs. key size. 

TABLE 11. SECURITY STRENGTH FOR PROPOSED VS. PREVIOUS 

WORKS 

Key size Security Strength 

TA & SD SDSS-IIoT Proposed 

64 bits 0.1 0.15 0.2 

128 bits 0.2 0.3 0.4 

512 bits 0.3 0.4 0.6 

1024 bits 0.4 0.6 0.8 

2048 bits 0.5 0.7 1.0 

Average 0.25  0.358 0.5 

 

In [41], A secure KNN algorithm in SDSS-IIoT was 

proposed to improve data confidentiality, increase storage 

capacity, and prevent privacy data leakage, addressing the 

weaknesses of the BLS-Pseudorandom function. Fig 17 and 

Table 12 shows the performance of the security strength 

with respect to message size (bits). The average security 

strength for the proposed scheme is 0.61, which is higher 

than previous works such as TA&SD, SDSS-IIoT since its 

obtained 0.341, and 0.358, respectively. We proposed ECC-

HM, which is lightweight cryptographic algorithm, which 

gives high security strength when message size increases. It 

consumes minimal amount of time for encryption and 

decryption. 

 
Fig. 17. Security strength vs. message size. 

TABLE 12. SECURITY STRENGTH VS. PREVIOUS WORKS 

Message size Security Strength 

TA & SD SDSS-IIoT Proposed 

1000 bits 0.2 0.15 0.4 

2000 bits 0.35 0.3 0.6 

3000 bits 0.4 0.4 0.8 

4000 bits 0.5 0.6 0.9 

5000 bits 0.6 0.7 1.0 

Average 0.341  0.358 0.61 

 

Fig. 18, 19, Table 13, and Table 14 show the performance of 

security strength with respect to time of encryption and 

decryption. Pseudorandom function and secure KNN 

algorithm are not lightweight cryptography and thus it takes 

high processing time. 

 
Fig. 18. Security strength vs. Encryption time. 

TABLE 13. SECURITY STRENGTH OF THE PROPOSED VS. 

PREVIOUS WORKS 

Encryption 

Time 

Security Strength 

TA & SD SDSS-IIoT Proposed 

400ms 0.12 0.08 0.25 

800ms 0.32 0.12 0.45 

1200ms 0.4 0.25 0.65 

1200ms 0.65 0.35 0.85 

2000ms 0.8 0.55 1.0 

Average 0.381  0.225 0.533 

 

 



Fig. 19. Security strength vs. decryption time. 

TABLE 14. SECURITY STRENGTH OF THE PROPOSED VS. 

PREVIOUS WORKS 

Decryption 

time 

Security Strength 

TA & SD SDSS-IIoT Proposed 

400ms 0.06 0.04 0.02 

800ms 0.16 0.06 0.03 

1200ms 0.2 0.12 0.08 

1600ms 0.35 0.15 0.011 

2000ms 0.4 0.55 0.012 

Average 0.195 0.153 0.0255 

 

e) Detection Rate 

This paper presents a new algorithm for classifying packets 

into normal or attack types, identifying frequent or rare 

attacks. The model compares with previous works in fog 

Cloud environments and can be adjusted based on packet 

and node arrival. The model achieves a high detection rate 

of 99.4% for any class, surpassing previous works' averages 

of 97.5%, 94.52%, and 97.86%. The model's performance is 

compared to previous works in fog Cloud environments as 

shown in Fig. 20. 

 
Fig. 20. Detection rate vs. number of IoT devices. 

This paper proposes a method for intrusion prevention using 

trusted authority, a one-way hash function, which restricts 

malicious node access, improving detection rate (DR) 

against presence attackers, as legitimate nodes can be easily 

compromised. 

f) Throughput  

It is defined as the successful packets transmission rate than 

previous works. It is a positive indicator so it must be higher 

to show the system has obtained better performance. Fig 21 

shows the result for throughput with respect to number of 

nodes. 

 
Fig. 21. Throughput vs. Number of IoT devices. 

A novel approach to attack detection using a DNN model, 

combining lightweight algorithms for effective classification 

was presented. This model outperforms previous works in 

terms of average latency, user satisfaction, network lifetime, 

security strength, and energy consumption. The model 

achieves an average throughput of 220kbps, surpassing 

previous works such as TA & SD, FEER, ABCS, and 

SDSS-IIoT. The paper addresses research questions on 

efficient fog node allocation to different IoT users, proper 

storage file organization to reduce energy consumption and 

delay, protection of the entire Fog-assisted Cloud-based IoT 

environment against attackers, and proposing a robust 

blockchain-based IoT architecture for task distribution and 

secure deduplication. 

 

VI. CONCLUSION AND FUTURE WORKS 

Healthcare is a significant issue in the industrial sector, with 

deduplication being crucial to minimize storage capacity 

and latency of cloud servers and fog nodes. To address this, 

a paper was designed using a Fog assisted Cloud 

environment for IIoT, focusing on Task Distribution and 

Secure Deduplication. The optimal CH was selected for task 

distribution from IoT devices to fog nodes, using SHA-3 for 

aggregated data. A proxy server was deployed between 

cloud servers and fog nodes to schedule user queries. 

Lightweight algorithms were proposed for data encryption 

to ensure data confidentiality. Simulations were conducted 

to compare the proposed scheme with previous works, 

revealing it outperforms them. The paper plans to focus on 

real-time applications and use fault detection mechanisms 

for error-correction in the future. 
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