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Abstract— In the realm of image security, the robustness 

of Convolutional Neural Networks (CNNs) against 

adversarial attacks is of paramount importance. In this 

study, we present a comprehensive approach to bolstering the 

adversarial resilience of a CNN through the integration of an 

autoencoder-based denoising mechanism. We initiated our 

investigation by training a CNN on a substantial dataset of 

2482 images, comprising 1241 for training and validation 

each. After the initial 50 epochs, the CNN demonstrated 

impressive performance with a training accuracy of 97%, 

validation accuracy of 92.46%, and testing accuracy of 

93.23%. Encouraged by these results, we preserved the model 

for further analysis. To fortify the CNN against adversarial 

attacks, we introduced an autoencoder tailored for denoising 

images. This autoencoder was trained on a curated set of 

combined images generated from the original dataset. The 

primary objective of the autoencoder is to eliminate noise 

from images, thereby enhancing the model's ability to discern 

subtle patterns and features crucial for robust classification. 

However, a noteworthy observation emerged during our 

experimentation – the trained autoencoder exhibited 

limitations in distinguishing between benign and adversarial 

instances. Despite its efficacy in denoising, the autoencoder 

struggled to differentiate between authentic and adversarial 

features, raising intriguing questions about the complexity of 

adversarial perturbations. This study sheds light on the 

intricate interplay between denoising autoencoders and 

adversarial attacks within the context of image security. Our 

findings underscore the need for further exploration into the 

nuances of adversarial robustness and the role of denoising 

mechanisms in fortifying CNNs against increasingly 

sophisticated threats. As we delve deeper into this intriguing 

intersection of image processing and security, the insights 

gained from this research pave the way for more resilient and 

dependable image classification systems in the face of 

evolving adversarial landscapes. 

Keywords: Convolutional Neural Networks (CNNs), 
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I. INTRODUCTION 

In the ever-evolving landscape of image security, the 

robustness of Convolutional Neural Networks (CNNs) and 

deep learning [9-14] against adversarial attacks stands as a 

critical frontier. As the prevalence and sophistication of 

adversarial threats continue to escalate, the imperative to 

fortify image classification models becomes increasingly 

paramount. This study ventures into the intricate 

intersection of denoising mechanisms, represented by an 

autoencoder, and the adversarial robustness of a CNN. 

The initial phase of our investigation involved training a 

CNN on a substantial dataset comprising 2482 images, 

meticulously partitioned into 1241 images for training and 

validation each. After the first 50 epochs, the CNN 

demonstrated commendable performance, achieving a 

training accuracy of 97%, a validation accuracy of 

92.46%, and a testing accuracy of 93.23%. This initial 

success formed the foundation for our subsequent 

exploration into enhancing the model's resilience against 

adversarial manipulations. 

Recognizing the limitations of CNNs in discerning subtle 

adversarial features, we introduce an autoencoder 

specifically crafted for denoising images. The 

autoencoder's primary purpose is to eliminate noise from 

images, with the expectation that this denoising capability 

could fortify the CNN against adversarial attacks. 

However, as we delve into the complexities of this 

integration, preliminary analyses using Principal 

Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (t-SNE) suggest challenges in the 

autoencoder's ability to distinguish between authentic and 

adversarial instances.  

This study unfolds as an exploration into the effectiveness 

of the autoencoder in enhancing adversarial resilience. We 

leverage established dimensionality reduction techniques 

to visually inspect the feature representations produced by 

the autoencoder. Additionally, we subject the CNN to 

adversarial attacks, probing the autoencoder's capacity to 

denoise these perturbed images. The implications of our 

findings extend beyond the realms of image denoising, 

touching upon the broader discourse of fortifying neural 

networks against adversarial landscapes. 

The rest of the paper is organized as follows: Section 2 

provides a review of related literature in the field of 

adversarial attacks on deep learning models. Section 3 

presents the methodology, including a detailed description 

of the proposed active learning methodology, and its 

working against adversarial attacks. Section 4 discusses 

the experimental setup mentioning dataset used, evaluation 

metrics considered and details of parameters taken. 

Analysis of results has been put in Section 5. Finally, 

Section 6 concludes the paper.  

2.   RELATED RESEARCH 

Addressing the challenge of non-retrained autoencoders in 

enhancing adversarial robustness prompts a deeper 
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exploration into existing research endeavors. The work of 

Song et al. (2021) delves into the nuances of leveraging 

pre-trained autoencoders for adversarial defense. Their 

study underscores the importance of transfer learning 

principles, demonstrating that pre-trained autoencoders, 

even without specific retraining for adversarial scenarios, 

can provide meaningful improvements in robustness. 

Similarly, the findings of Chen et al. (2022) shed light on 

the limitations of non-retrained autoencoders and 

advocate for the incorporation of domain-specific fine-

tuning to bridge the performance gap. By drawing 

inspiration from these studies, our research seeks to 

unravel the underlying factors contributing to the 

suboptimal performance of non-retrained autoencoders in 

the context of adversarial resilience, thereby contributing 

to a more nuanced understanding of effective strategies 

for leveraging autoencoders in adversarial defense. 

II. METHODOLOGY 

Baseline Autoencoder Training: 

Train an autoencoder on the chosen dataset for denoising 
purposes, without specific retraining for adversarial 
scenarios. Utilize a representative subset of the dataset for 
autoencoder training, ensuring coverage of various image 
features. We define an auto-encoder model for denoising 
images. The auto-encoder's purpose is to remove noise 
from images, which will be used during the adversarial 
training process. The auto-encoder is trained on combined 
images generated from the original images. 

 

Fig. 1: Proposed autoencoder model. 

 

Fig. 2: Flow of our methodology 

Adversarial Attack Generation: 

Employ well-established adversarial attack methods like 
Fast Gradient Sign Method (FGSM) or Projected Gradient 
Descent (PGD) to generate adversarial examples from the 
test set. Ensure a range of attack strengths to assess the 
autoencoder's performance across different adversarial 
intensities. 

 

Fig. 3. Change in adversarial accuracy on changing 
epsilon. 

 

Fig. 4. Heatmap understanding on real and adversarial 
images 

.

 

Fig. 5: Pixel intensity analysis. 



Autoencoder Evaluation - Feature Analysis: 

Utilize Principal Component Analysis (PCA) and t-
distributed Stochastic Neighbor Embedding (t-SNE) to 
visualize the feature representations extracted by the non-
retrained autoencoder. Analyze the PCA and t-SNE plots 
to identify patterns and understand the effectiveness of the 
autoencoder in capturing relevant features. 

 

 

Fig. 6: t-SNE analysis. 

Adversarial Resilience Assessment: 

Evaluate the baseline autoencoder's performance in 
denoising adversarial examples generated by the 
adversarial attacks. Measure the reconstruction loss 
between the original and denoised images to quantify the 
efficacy of the autoencoder in mitigating adversarial 
perturbations. 

 

Fig. 7: Resilience analysis. 

Ⅳ. EXPERIMENTAL SETUP 

In evaluating the Deep Neural Network (DNN) model's 

performance and robustness within the proposed 

methodology, a set of key metrics is employed. The 

accuracy metric gauges the model's correctness on both 

clean and adversarial data, measuring the proportion of 

correctly classified instances. Entropy scores quantify the 

uncertainty in the model's predictions, aiding in the 

selection of challenging examples for active learning by 

identifying instances with higher uncertainty. Adversarial 

accuracy assesses the model's performance specifically on 

adversarial examples, such as those generated through 

attacks like FGSM. Labeling accuracy, pertinent to active 

learning, evaluates the model's correctness on newly 

labeled examples throughout iterations. Finally, model 

robustness measures the DNN's ability to maintain 

accuracy across clean and adversarial datasets over 

multiple active learning cycles, providing a 

comprehensive assessment of its resistance to adversarial 

attacks. 

4.1     Dataset Used 

 

The SARS-CoV-2 CT [14] scan dataset comprises images 

from individuals with COVID-19 (Covid-19) and those 

without the virus (Non Covid-19). The dataset (Table 1) 

encompasses a total of 1252 CT scans depicting cases of 

Covid-19 and 1230 CT scans representing non-Covid-19 

cases. These images serve as a valuable resource for 

researchers and medical professionals to study and 

analyze the distinctive features of COVID-19 in CT 

scans, aiding in the development of diagnostic and 

monitoring tools for the disease. The relatively balanced 

distribution of cases between Covid-19 and non-Covid-19 

instances enhances the dataset's utility in training machine 

learning models for accurate classification and detection 

of SARS-CoV-2 infections based on CT imaging. 

Table 1. Images taken from SARS-CoV-2 dataset. 

Types of Classes Number of Images 

COVID-19 

NON COVID-19 

1252 

1230 

Total Images 2482 

  



               

                            (a)                          (b)                            

Fig. 8: Images taken from SARS-CoV-2 dataset. (a) Covid-

19, (b) Non Covid-19 

4.2     Image Preprocessing 

In the image preprocessing pipeline, each input undergoes 

resizing to 224x224 pixels (Figure 3) and pixel value 

normalization to the [0, 1] range. Resizing standardizes 

dimensions, crucial for neural networks, and facilitates 

compatibility with pre-trained models. The common size 

reduces computational complexity, making it feasible for 

large datasets. Normalization prevents feature dominance 

and ensures consistent weight updates during training, 

enhancing model compatibility, stability, and 

performance with image data.   

4.3    Parameters Taken 

In the model training setup, several hyperparameters and 
configurations are defined to guide the learning process 
effectively. The learning rate, set at a value of 0.0001, 
plays a crucial role in determining the step size of weight 
updates during training, affecting the model's 
convergence and stability. A batch size of 16 specifies the 
number of training samples processed in each iteration, 
balancing computational efficiency and gradient accuracy. 
The training process spans a maximum of 50 epochs, 
allowing the model to iteratively refine its parameters 
through multiple passes over the dataset. The optimizer 
chosen is Adam, a popular optimization algorithm that 
dynamically adapts the learning rate during training to 
accelerate convergence. Finally, the categorical cross-
entropy loss function is employed to quantify the 
dissimilarity between predicted and true class 
probabilities, guiding the model towards more accurate 
classification results. These carefully selected 
hyperparameters and configurations collectively 
contribute to the successful training and performance of 
the deep learning model as shown in Table 2. 

TABLE 2. Experimental setup. 

Parameters Values 

Learning Rate 

Batch Size 

Max Epochs 

Optimizer 

Loss Function 

0.0001 

16 

60 

Adam 

Categorical Cross-entropy 

 

4.4     Model Training 

For the initial model training, dataset splitting is vital in 
machine learning [1-8], with 80% for training and 20% 
for testing, maintaining class balance through stratified 
sampling. Training involves backpropagation and gradient 
descent, updating weights to minimize the categorical 

cross-entropy loss function. This iterative process enables 
the model to learn patterns and improve predictive 
capabilities. The carefully orchestrated split and 
optimization techniques ensure the model is evaluated 
realistically, gauging its ability to generalize to new, 
unseen data points. 

4.5     Performance Metrics Considered 

In evaluating image classification and object detection 
models, key metrics include accuracy, loss values, 
precision, recall, F1-score, Top-1% error, confusion 
matrix and reliability curve. These collectively offer a 
comprehensive assessment of model performance, 
addressing aspects like overall correctness, convergence 
during training, precision-recall balance, ranking 
accuracy, and localization precision. The choice of 
metrics depends on the specific task and objectives, 
considering factors such as class distribution and real-
world consequences of different errors. A holistic analysis 
guides model improvement, aligning with project goals 
and priorities. 

V. ANALYSIS OF RESULTS 

The outcomes of our experimentation reveal a noteworthy 

set of findings regarding the effectiveness of a non-

retrained autoencoder in bolstering adversarial resilience. 

The visualization tools, Principal Component Analysis 

(PCA) and t-distributed Stochastic Neighbor Embedding 

(t-SNE), provide crucial insights into the feature 

representations and the model's performance. 

Unfortunately, the results indicate a significant overlap in 

the feature spaces, signaling challenges in the 

autoencoder's ability to distinguish between clean and 

adversarial instances. 

 

1. PCA and t-SNE Overlapping: 

 

The PCA and t-SNE plots showcase substantial overlap 

between the feature representations of clean and 

adversarial examples. This overlapping indicates that the 

non-retrained autoencoder struggles to generate distinct 

representations for these different classes, potentially 

compromising its denoising efficacy in the presence of 

adversarial perturbations. 

 

2. Limited Discrimination Capability: 

 

The observed overlap suggests that the autoencoder lacks 

the discriminatory capability needed to effectively separate 

clean and adversarial features. This limitation is critical for 

robust adversarial defense, as the model must accurately 

identify and eliminate perturbations introduced by 

adversarial attacks. 

 

3. Implications for Adversarial Resilience: 

 

The compromised performance of the non-retrained 

autoencoder raises concerns about its utility in enhancing 

adversarial resilience. Adversarial attacks often exploit 

vulnerabilities in feature representations, and the inability 

of the autoencoder to distinctly capture adversarial patterns 

may hinder its denoising effectiveness in real-world 

scenarios. 



 

4. Comparative Analysis with Retrained Autoencoder: 

 

These findings warrant a comparative analysis with a 

retrained autoencoder that explicitly incorporates 

adversarial examples in its training. Such a comparison 

will shed light on whether targeted training strategies can 

address the observed limitations and improve the 

autoencoder's performance in the presence of adversarial 

instances. 

 

5. Future Directions: 

 

The suboptimal results suggest avenues for future 

research. Exploring alternative autoencoder architectures, 

incorporating adversarial training during the autoencoder's 

training phase, or leveraging additional preprocessing 

techniques may be avenues to enhance the model's 

adversarial resilience. 

Ⅴ. CONCLUSION 

The current analysis underscores the challenges associated 

with relying solely on a non-retrained autoencoder for 

adversarial defense. The observed PCA and t-SNE 

overlapping signals a need for more sophisticated 

strategies to fortify autoencoders against adversarial 

perturbations, emphasizing the complex interplay between 

denoising mechanisms and adversarial resilience in deep 

learning models. 
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