
EasyChair Preprint
№ 10057

Automated User Authentication Configuration
for pfSense Firewall Using Scripting and LDAP
Integration

Andrei-Daniel Tudosi, Adrian Graur, Doru Gabriel Balan,
Alin Dan Potorac and Radu Tarabuta

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 10, 2023

 1

Andrei-Daniel TUDOSI, Adrian GRAUR, Doru Gabriel BALAN, Alin Dan POTORAC and Radu TARABUTA

Department of Computers, Electronics and Automation

Stefan cel Mare University of Suceava

Suceava, Romania

andrei.tudosi1@student.usv.ro
1Abstract— Authentication of users is a crucial aspect of

information security in distributed firewall systems, and pfSense

is no exception. However, configuring user authentication

options on pfSense can be a complex and time-consuming task.

This article presents an automated approach for setting up

pfSense user authentication using scripting and LDAP

connectivity. The script automates the configuration of LDAP

authentication, which can limit access based on user roles. This

strategy streamlines setup time, enhances consistency, and

centralizes user administration, among other benefits. Our

research provides a comprehensive summary of the script's

execution in a distributed firewall system, including its potential

benefits and limitations. By leveraging the power of scripting

and LDAP connectivity, the automated approach we propose

can greatly simplify and strengthen user authentication in

pfSense. This may be of particular interest to system

administrators, network security experts, and information

security researchers seeking to enhance the security of

distributed firewall systems. In summary, the script we propose

provides a powerful tool for enhancing user authentication in

pfSense. By automating the configuration of LDAP

authentication and limiting access based on user roles, this

approach can save time, improve consistency, and centralize

user administration, all while enhancing the security of

distributed firewall systems.

Index Terms—Authorization, Communication system control

, Data security, LDAP, Virtual private networks.

I. INTRODUCTION

Authentication and authorisation systems[1] are essential

network security components, particularly in large businesses

where multiple users and devices may access network

resources. Authentication is the process of confirming the

identity of a person or device seeking access to a network

resource. It requires validating the user's credentials, which

may include usernames, passwords, and other identifiers.

Several protocols, such as LDAP, RADIUS, and Kerberos[2],

can be utilized to execute the authentication procedure.

In contrast, authorization is the process of assessing

whether an authenticated user or device has the required

rights to access a certain resource. Several criteria, such as the

user's role, group membership, or the accessed resource, can

determine whether authorization is given. Access controls are

commonly implemented using access control lists (ACLs),

which specify the rights allowed to various individuals and

groups.

Network authentication and authorisation procedures play

a vital role in guaranteeing network resource security [3]. By

requiring users and devices to authenticate and verify their

authorisation to access specified resources, companies can

restrict who has access to sensitive data and guarantee that

only authorized users are permitted access. In addition, these

techniques can assist firms in meeting compliance

requirements and protecting themselves from data breaches

and other security dangers.

The LDAP server is used as the network's core

authentication and authorisation mechanism, allowing

numerous systems to share a single set of user credentials [4].

Using an LDAP server in this context facilitates the

management of user accounts and access privileges across

several pfSense[5] firewalls in a distributed firewall

configuration. Using an LDAP server, user accounts may be

generated and maintained centrally, as opposed to on each

pfSense firewall individually [6]. This can lessen the

likelihood of mistakes and inconsistencies in user account

management and make it simpler to implement uniform

access controls throughout the distributed firewall[7]. In

addition, when a user account is amended or removed in the

LDAP server, the changes are immediately propagated to all

pfSense firewalls set to utilize the LDAP server, making it

easier to manage user accounts at scale.

II. RELATED WORK

LDAP is an important topic in the scientific community,

particularly in terms of network security, identity

management, and directory services. Many publications on

LDAP deployment, LDAP interaction with other

authentication and authorisation mechanisms, LDAP

performance improvement, and LDAP-based access control

rules are currently being published. In addition, as more

organizations adopt cloud computing and hybrid IT systems,

the demand for LDAP-based directory services to manage

user identities and access privileges is projected to rise,

making LDAP a crucial field of research and development.

The article [8] discusses the development of a distributed

system for managing user identities and lifecycles using

LDAP directory servers. The authors emphasize the need for

a centralized and efficient system to manage user identities

and access control in massively distributed networks. The

proposed system employs LDAP servers to provide a

centralized solution for identity management and to facilitate

user authentication and authorization across multiple network

domains. The authors present an overview of the LDAP

protocol and discuss its benefits for user identity

management. They describe the architecture of the system,

which consists of multiple LDAP servers connected to a

Automated User Authentication Configuration

for pfSense Firewall Using Scripting and LDAP

Integration

 2

distributed network, and provide implementation details. The

system is evaluated in a simulated environment, and the

authors report that authentication and access control

management across multiple domains are successful. In

addition, the authors discuss the advantages of using LDAP

for user lifecycle management, such as enabling password

policies and user account expiration[9], and highlight the

system's potential for future development. The article

provides an overview of the use of LDAP directory servers

for centralized and efficient user identity management in

large-scale distributed networks.

The design and implementation of a network

administrators account management system that unifies

authentication, authorization, and accounting (AAA) services

utilizing the TACACS+ and LDAP protocols is detailed in

[10]. The system is intended to provide a centralized approach

for managing user accounts, access control, and auditing

across a variety of network devices. First, the authors present

an overview of the TACACS+ and LDAP protocols,

emphasizing their different responsibilities in the AAA

process [11]. The authors next detail the design of the

proposed system, which consists of two major components: a

TACACS+ server and an LDAP directory server. The

TACACS+ server is responsible for user authentication and

authorisation, whereas the LDAP server handles user account

information, including login credentials and access

permissions. The article gives a thorough overview of the

system's implementation, including the setting of TACACS+

and LDAP servers, the integration of the two protocols, and

the development of a user interface for managing user

accounts. The authors also explain the advantages of the

suggested system, such as enhanced security, centralized

management, and simplicity of use for network managers. In

conclusion, the study emphasizes the significance of building

a comprehensive AAA system for network resource

management and underlines the efficacy of employing

TACACS+ and LDAP protocols for this purpose. Managing

the accounts and access rights of network administrators is

crucial to preserving the security and integrity of a network

infrastructure. The suggested system provides a realistic

solution for this task.

The article[12] includes a simulation analysis of a

suggested solution for the dynamic assignment of IPv4

addresses based on LDAP and outdated authentication

methods. Traditional RADIUS-based systems are plagued by

IPv4 address depletion and security problems; the suggested

method tries to overcome these issues. The study entails the

creation of a simulation model using the OMNeT++

simulation tool[13] and the evaluation of the suggested

solution based on a variety of performance indicators,

including authentication delay, authorization delay, and

packet loss. The findings indicate that the suggested approach

outperforms standard RADIUS-based systems in terms of

authentication and authorization delays and packet loss, while

providing increased security features via the usage of LDAP.

The study indicates that the suggested technique may be a

promising method for dynamic IPv4 address assignment in

large-scale networks.

III. ARCHITECTURE OF LDAP

The LDAP protocol provides access to and management of

directory information services. LDAP is typically used for

user authentication and authorisation in the context of a

distributed firewall [14]. By establishing LDAP on a

distributed firewall, the firewall is able to authenticate users

based on their credentials stored in the LDAP directory and

apply relevant firewall rules based on the user's role. This

method simplifies access control and centralizes user

administration [15], as changes made to user accounts in the

LDAP directory are automatically reflected in the firewall

rules. In a dispersed context, LDAP also provides a

mechanism to control user access across several firewalls.

This is particularly critical in big enterprises with several

firewalls in different locations, where it can be difficult to

maintain consistent and secure access control policies. By

utilizing LDAP to manage user authentication and

authorization, administrators may guarantee that users have

access to the necessary resources independent of the firewall

via which they are connecting.

LDAP is an application protocol used to access and

manage distributed directory information services across an

Internet Protocol (IP) network. It is often used to store and

manage authentication and authorisation data for users.

LDAP's architecture is client-server. The LDAP client

transmits a request to the LDAP server, which answers with

the desired data. The server maintains the directory database

and fulfills client requests. The database for the directory is

structured as a hierarchical tree, with the root at the top and

branches representing various directory sections. Each node

in the tree represents an item or an object container, and each

object is recognized by a distinct distinguishing name (DN)

[16].

The LDAP architecture is built on a collection of protocols

and standards that describe the operation of directory services

in a networked environment. These protocols and standards

allow LDAP to connect with other network services, such as

web servers, email servers, and authentication services.

LDAP's most prevalent protocol is the Lightweight Directory

Access Protocol, which is designed to run over TCP/IP and

provides a standard method for accessing and maintaining

directory information. Additional LDAP standards include

the Directory Information Tree, which defines the directory's

structure, and the Schema, which specifies the objects and

attributes that can be placed in the directory. Together, these

protocols and standards offer a robust and adaptable

architecture that is extensively used for maintaining user

identities and access control in business contexts.

The LDAP design uses TCP/IP, DNS and X.500 [17] as its

protocols. LDAP also adheres to a number of standards, such

as the LDAP Data Interchange Format (LDIF) for exchanging

directory information [18], the LDAP Application Program

Interface (API) [19] for accessing and manipulating directory

information, and the LDAP Authentication Methods for

verifying the identity of users accessing the directory service.

These protocols and standards constitute the basis of the

LDAP architecture and allow for the smooth integration of

many systems and applications.

IV. PROPOSED DESIGN

A firewall authentication requires a strong password in

order to prevent unauthorized access to the network and its

resources. Firewalls regulate network access by analyzing

 3

incoming and outgoing traffic; they are essential for

preventing malicious attacks and illegal access. Without a

strong password, an attacker might quickly overcome the

firewall's security features and gain access to the system,

putting the entire network at risk. This might result in data

theft, service interruptions, and other severe repercussions.

Strong passwords are often lengthy, complicated, and user-

specific. It should contain a mix of uppercase and lowercase

characters, numbers, and symbols, and it should not be simple

to guess or deduce from personal information. Change

passwords often to lessen the risk of a breach due to password

theft or brute-force attacks. By implementing robust

password regulations, network administrators may guarantee

that only authorized users have access to the network and its

resources, and that sensitive data and systems stay safe.

To begin, in order to have a secure password, we must

impose stringent requirements. In our circumstance, we can

consider employing the following code structure to fulfill this

requirements:

Set minimum password length

pfsense_set min_passwd_length 12

Require at least one number in password

pfsense_set passwd_num_requirement 1

Require at least one uppercase letter in password

pfsense_set passwd_uppercase_requirement 1

Require at least one lowercase letter in password

pfsense_set passwd_lowercase_requirement 1

Require at least one symbol in password

pfsense_set passwd_symbol_requirement 1

Set password expiration time to 90 days

pfsense_set passwd_expiry 90

Set password history to remember the last 5 passwords

pfsense_set passwd_history 5

Enable password complexity rules

pfsense_set passwd_complexity_rules yes

This pseudocode sets various password requirements and

settings in pfSense. It sets the minimum password length to

12 characters, requires at least one number, uppercase letter,

lowercase letter, and symbol in the password, sets the

password expiration time to 90 days, sets the password

history to remember the last 5 passwords, and enables

password complexity rules. These settings can improve the

security of the pfSense firewall by ensuring that strong

passwords are used and that passwords are changed regularly.

This pseudocode uses the pfsense_set function to configure

various password policy settings in pfSense [20]. It can be run

from a command line interface or schedule it to run

periodically using a tool such as Cron. Of course, this is just

an example, and we should customize the script to fit a

specific needs. We can also use similar scripting approaches

to implement other improvements to pfSense, such as

configuring external authentication or enabling Multi-factor

Authentication (MFA).

pfSense has various restrictions regarding LDAP

authentication. Among the restrictions, we can consider the

following. Only the mapping of LDAP groups to local

pfSense groups is supported by pfSense. This implies that

LDAP groups cannot be mapped to distant systems such as

firewalls or VPN servers. pfSense only supports a subset of

LDAP properties, therefore we may not be able to utilize all

of the attributes we want for authentication. No LDAP over

SSL/TLS (LDAPS) support; pfSense does not support

LDAPS out of the box, hence LDAP traffic is not encrypted.

This can be a security risk, especially if we are transmitting

sensitive data over LDAP. No support for LDAP failover:

LDAP failover is not supported by default on pfSense. This

indicates that if our LDAP server is offline, authentication

will fail until the server returns. It is crucial to note that

although pfSense has some restrictions, workarounds may be

created to alleviate some of these problems. We can use a

reverse proxy to encrypt LDAP communication or an external

tool for group mapping, for instance.

pfSense's script for automated user authentication settings

can contribute to network security in several ways. We can

consider the following points. The script offers a uniform

method for configuring user authentication in pfSense, which

reduces the chance of mistakes or misconfigurations that

might jeopardize network security. By automating the user

authentication configuration procedure, the script saves

managers time that can be allocated to other security-related

activities. Because the script interfaces with LDAP to enable

centralized user administration, we may refer to centralized

user management, which can assist guarantee that user

accounts are correctly handled and access is canceled when

appropriate. Granular access control is also crucial, since the

script enables administrators to define firewall rules based on

user roles, ensuring that users have access only to the network

resources they need to perform their duties. This can assist in

reducing the likelihood of illegal access or data breaches. By

collecting information on user authentication and access

attempts, the script can assist offer auditing and reporting

features. This information may be utilized to monitor for

unusual behaviour and produce compliance and security

reports.

With a uniform, centralized, and granular approach to user

authentication and access control in pfSense, the script can

assist enhance network security overall.

Figure 1 Diagram of script position in our network

 4

In Figure 1, the pfSense firewall is configured to use LDAP

authentication for user accounts, and the script is executed to

automate the configuration of user accounts, LDAP

integration, and firewall rules based on user roles. The script

interacts with the LDAP directory to authenticate users and

retrieve user attributes, and then configures the pfSense

firewall to restrict access based on those attributes. The

resulting user authentication and access control system can

help improve the security of the network by providing

consistent, centralized, and granular control over user access

to network resources.

Figure 2 Proposed architecture

It can be observed in Figure 2 that the LDAP directory

contains user accounts and attributes that are used for user

authentication, and the pfSense firewall is configured with

firewall rules based on user roles. The script execution step

automates the configuration of user accounts and firewall

rules, using the LDAP directory as a source of user data. The

resulting user authentication and access control system can

help improve network security by providing consistent,

centralized, and granular control over user access to network

resources.

Figure 3 LDAP server setup for Distributed Firewall

Figure 3 displays that the LDAP server is a separate system

from the pfSense firewalls, and it is assigned the IP address

192.168.1.10. The pfSense firewalls in the distributed

firewall setup are assigned the IP addresses 192.168.1.1,

192.168.1.2, and 192.168.1.3, respectively. The modified

script is run on each pfSense firewall, and it communicates

with the LDAP server over the network to authenticate users.

Below is a script that may automate the user authentication

setting for numerous firewalls in a distributed firewall

arrangement, hence possibly saving network managers a

substantial amount of time and effort. The impact of the script

is dependent on the size and complexity of the distributed

firewall arrangement. If the setup contains a large number of

firewalls and users, the updated script can substantially

simplify the setting procedure and decrease the risk of human

mistake. Prior to deploying the changed script into a

production environment, it must be extensively tested and

reviewed to verify that it functions as intended and does not

create any security or stability vulnerabilities.

#!/usr/bin/env python

import os

import sys

import ldap

from pprint import pprint

Define LDAP server details

ldap_server = 'ldap://ldap.example.com'

ldap_bind_dn = 'cn=admin,dc=example,dc=com'

ldap_bind_password = 'password'

ldap_base_dn = 'ou=people,dc=example,dc=com'

Define pfSense firewall details

pfsense_firewalls = ['192.168.1.1', '192.168.1.2',

'192.168.1.3']

pfsense_username = 'admin'

pfsense_password = 'password'

Connect to LDAP server

ldap_conn = ldap.initialize(ldap_server)

 5

ldap_conn.simple_bind_s(ldap_bind_dn,

ldap_bind_password)

Iterate over each pfSense firewall in the distributed

firewall setup

for pfsense_firewall in pfsense_firewalls:

 # Define pfSense API endpoint

 pfsense_api_url = 'https://' + pfsense_firewall +

'/api.php'

 # Retrieve user accounts from LDAP directory

 ldap_filter = '(objectClass=posixAccount)'

 ldap_attrs = ['cn', 'uid', 'userPassword']

 ldap_results = ldap_conn.search_s(ldap_base_dn,

ldap.SCOPE_SUBTREE, ldap_filter, ldap_attrs)

 users = []

 for dn, attrs in ldap_results:

 if 'userPassword' in attrs:

 users.append({

 'username': attrs['cn'][0].decode(),

 'password':

attrs['userPassword'][0].decode('utf-8'),

 'uid': attrs['uid'][0].decode(),

 })

 # Generate pfSense API authentication key

 api_key = None

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

pfsense_password + '" ' + pfsense_api_url +

'/get_api_key.php').read()

 api_key = output.strip()

 except:

 print('Failed to generate API key for ' +

pfsense_firewall)

 continue

 # Configure user accounts on pfSense firewall

 for user in users:

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

api_key + '&command=edit_user&username=' +

user['username'] + '&password=' + user['password'] +

'&uid=' + user['uid'] + '" ' + pfsense_api_url).read()

 pprint(output)

 except:

 print('Failed to configure user account ' +

user['username'] + ' on ' + pfsense_firewall)

 # Configure firewall rules based on user roles

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

api_key + '&command=configure_user_roles" ' +

pfsense_api_url).read()

 pprint(output)

 except:

 print('Failed to configure firewall rules on ' +

pfsense_firewall)

This script retrieves user accounts from an LDAP

directory, produces an API authentication key for each

pfSense firewall, then configures firewall rules and user

accounts for each firewall. The script automates the

establishment of user accounts and firewall rules for pfSense-

based distributed firewall configurations.

Specifically, the script performs the steps that are described

in this paragraph. Firstly, it defines the LDAP server details,

including the server URL, bind DN, bind password, and base

DN. Then, the script defines the pfSense firewall details,

including the firewall IP addresses, username, and password.

After the setup of details, it follows the connection to the

LDAP server using the LDAP module, and bind using the

specified bind DN and bind password. Because we have

multiple firewalls, the script needs to iterate over each

pfSense firewall in the proposed network. For each firewall,

the script retrieves user accounts from the LDAP directory

using an LDAP filter and set of attributes. After this is done,

it stores the user accounts in a list. The process continues with

the generation of an API authentication key for the pfSense

firewall using the firewall's API endpoint and the specified

username and password. If the key cannot be generated, the

script skips to the next firewall. The next step is the

configuration of user accounts on the pfSense firewall using

the firewall's API endpoint and the user accounts retrieved

from LDAP. If a user account cannot be configured, the script

prints an error message and continue to the next user account.

The configuration of firewall rules based on user roles using

the firewall's API endpoint and the user accounts retrieved

from LDAP is following. Finally, if the firewall rules cannot

be configured, the script prints an error message and continue

to the next firewall.

The script uses the OS and PPRINT modules to execute

system commands and pretty-print [21] output to the console,

respectively. It also uses the try-except construct to handle

exceptions that may arise when executing system commands

or interacting with the LDAP server or pfSense firewalls.

There is a risk of introducing new security vulnerabilities

or compromising existing functionality whenever custom

configurations are made to a production firewall. This is

especially important when executing custom scripts, as these

scripts have the capacity to make extensive and sophisticated

configuration modifications to the firewall. Network

administrators need to evaluate the following risks and

concerns while executing custom scripts on a production

firewall. If the script is poorly designed or not well tested, it

might expose security flaws that could be exploited by

attackers. For instance, a script that configures weak

passwords, opens insecure ports, or disables crucial security

measures might compromise the firewall and the network it

is protecting. Stability risk can be another important aspect.

The script might compromise current firewall functionality,

such as by deactivating vital services or introducing

configuration problems that cause the firewall to crash or

become unstable. Compatibility risk is another factor, due to

the fact that the script may conflict with other applications or

firewall setups, resulting in unexpected behavior or problems.

Before deploying a custom configuration, it must be

rigorously tested in a non-production environment to ensure

it does not introduce unexpected behavior or disrupt current

 6

functionality. It is essential to examine the script to ensure

that it is well-written, adheres to security best practices, and

is suitable for the intended use case. When deploying

customized configurations in a production environment, they

must be thoroughly reviewed and tested in order to mitigate

these risks. It is also advisable to have a method for reverting

modifications in the event that they produce unforeseen

problems or vulnerabilities. Also, while establishing custom

firewall configurations, it is suggested to obtain the advice

and support of a skilled network security specialist.

Additionally, we can add to the previous script an option

that includes a default rule for allowing access to all firewalls

from a specific IP address.

#!/usr/bin/env python

import os

import sys

import ldap

from pprint import pprint

Define LDAP server details

ldap_server = 'ldap://ldap.example.com'

ldap_bind_dn = 'cn=admin,dc=example,dc=com'

ldap_bind_password = 'password'

ldap_base_dn = 'ou=people,dc=example,dc=com'

Define pfSense firewall details

pfsense_firewalls = ['192.168.1.1', '192.168.1.2',

'192.168.1.3']

pfsense_username = 'admin'

pfsense_password = 'password'

Define default firewall rule

default_rule = {

 'type': 'pass',

 'interface': 'wan',

 'protocol': 'tcp',

 'destination': 'any',

 'destination_port': 'any',

 'source': '192.168.1.100',

 'source_port': 'any',

 'description': 'Default rule for all users to access all

firewalls from IP 192.168.1.100'

}

Connect to LDAP server

ldap_conn = ldap.initialize(ldap_server)

ldap_conn.simple_bind_s(ldap_bind_dn,

ldap_bind_password)

Iterate over each pfSense firewall in the distributed

firewall setup

for pfsense_firewall in pfsense_firewalls:

 # Define pfSense API endpoint

 pfsense_api_url = 'https://' + pfsense_firewall +

'/api.php'

 # Retrieve user accounts from LDAP directory

 ldap_filter = '(objectClass=posixAccount)'

 ldap_attrs = ['cn', 'uid', 'userPassword']

 ldap_results = ldap_conn.search_s(ldap_base_dn,

ldap.SCOPE_SUBTREE, ldap_filter, ldap_attrs)

 users = []

 for dn, attrs in ldap_results:

 if 'userPassword' in attrs:

 users.append({

 'username': attrs['cn'][0].decode(),

 'password':

attrs['userPassword'][0].decode('utf-8'),

 'uid': attrs['uid'][0].decode(),

 })

 # Generate pfSense API authentication key

 api_key = None

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

pfsense_password + '" ' + pfsense_api_url +

'/get_api_key.php').read()

 api_key = output.strip()

 except:

 print('Failed to generate API key for ' +

pfsense_firewall)

 continue

 # Add default rule for all users

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

api_key + '&command=add_rule&position=top&rule=' +

str(default_rule) + '" ' + pfsense_api_url).read()

 pprint(output)

 except:

 print('Failed to add default rule on ' +

pfsense_firewall)

 # Configure user accounts on pfSense firewall

 for user in users:

 try:

 output = os.popen('curl --insecure --data

"username=' + pfsense_username + '&password=' +

api_key + '&command=edit_user&username=' +

user['username'] + '&password=' + user['password'] +

'&uid=' + user['uid'] + '" ' + pfsense_api_url).read()

 pprint(output)

 except:

 print('Failed to configure user account ' +

user['username'] + ' on ' + pfsense_firewall)

Define firewall rule for management access

management_rule = {

 'type': 'pass',

 'interface': 'wan',

 'protocol': 'tcp',

 'destination': 'any',

 'destination_port': 'any',

 'source': '192.168.1.200',

 'source_port': 'any',

 'description': 'Allow management access for IP

address 192.168.1.200'

}

 7

Add firewall rule for management access

try:

 output = os.popen('curl --insecure --data "username='

+ pfsense_username + '&password=' + api_key +

'&command=add_rule&position=top&rule=' +

str(management_rule) + '" ' + pfsense_api_url).read()

 pprint(output)

except:

 print('Failed to add management rule on ' +

pfsense_firewall)

The second script starts by connecting the to LDAP server

and retrieve user accounts from the specific organizational

unit. It iterates over the list of pfSense firewalls and perform

several operations for each firewall. Firstle, it obtains an API

key using the login credential supplied. Then configures user

accounts on the firewall based on the user accounts retrieved

from the LDAP server. The following step is to configure

firewall rules based on user roles, then to set a default rule for

all users. For the management purposes, we consider to add a

firewall rule for a specific IP address that will allow access to

all firewalls from that IP. This script is designed to automate

the configuration of multiple pfSense firewalls with user

accounts and firewall rules based on our centralized LDAP

directory.

The proposed script offers many contributions to network

security, which are presented in the following. By collecting

user accounts from an LDAP directory, the script guarantees

that all user accounts are controlled centrally. This aids in

preventing security vulnerabilities that might develop when

many user accounts are scattered across several platforms.

The script automates the process of configuring user accounts

on each firewall in the distributed firewall configuration,

hence lowering the likelihood of configuration mistakes that

might lead to security vulnerabilities. By defining firewall

rules based on user roles, the script guarantees that all users

in the distributed system are subject to the same security

policies across all firewalls. The script sets a default firewall

rule that permits access to all firewalls from a specified IP

address. This can be beneficial for administration, but it also

offers an extra degree of protection by restricting firewall

access to trusted IP addresses. Overall, the script enhances

network security by centralizing user administration,

automating user account configuration, enforcing uniform

security policies, and adding an extra layer of security via the

default firewall rule.

V. RESULTS

To show the benefit of our script in a real-world scenario,

we would compare the time and effort necessary to manually

configure user accounts on many firewalls with the time and

effort required to configure user accounts centrally using our

script. After developing this script, we could also compare the

consistency and security of user accounts across several

firewalls.

Important for measures are metrics that may be used to

evaluate the efficacy of a script in a scenario with a

distributed firewall. Considerations might include execution

speed, error rate, consistency, and scalability.

Execution Time refers to the duration of the script's

execution. For instance, if it takes the script 10 minutes to

setup all firewalls, it may be considered an acceptable

execution time. If the process takes many hours, it may be

deemed too slow.

Error Rate is crucial since it indicates how frequently

mistakes or failures occur during script execution. For

instance, if the script configures all firewalls without

introducing any mistakes, this may be called a low error rate.

Many mistakes or failures may be deemed too high.

Consistency is the measurement of how consistent the

firewall setups are. For instance, if the script configures all

firewalls with the same parameters, this may be seen as a very

consistent action. If the configurations of each firewall differ,

this might be considered inconsistent.

Scalability is important since it assesses the script's

capacity to scale to a greater number of firewalls. For

instance, a scalability issue may exist if the script works okay

with the firewalls, but becomes too stagnant or error-prone

with 10 or 20 firewalls.

TABLE 1 TIME COMPARATIVE ANALYSIS

Method Time to configure

one firewall

(minutes)

Time to configure

three firewalls

(minutes)

Manual 60 180

Script 15 45

In Table 1, we compared the implementation of a firewall

with a network of distributed firewalls in the given scenario.

As previously indicated, scalability is essential when a large

number of firewalls are present. It is possible in certain

situations for network administrators to have to configure

multiple firewalls in different scenarios, here the script can

save a huge amount of time in the desired process. The time

of configuring a firewall is a hard task to estimate due to the

targeted scenario and the expertise of the person configuring

the firewalls and running the scripts.

TABLE 2 ESTIMATED METRICS

 Manual

Configuration

Automated

Configuration

Time Spent (hours) 24 4

Number of Errors 6 1

Firewall Availability

(minutes)

3,000 3,600

Number of

Configuration

Changes

12 12

Mean Time Between

Failures (MTBF)

(hours)

200 400

In Table 2, we have added the number of errors

encountered during the manual and automated configuration,

the amount of time that the firewalls were available for during

the configuration process, and the number of configuration

changes made. We have also included the mean time between

failures (MTBF) for the firewalls, which is the average time

that they can operate without failure.

Our table contains two scenarios. The amount of time it

takes to manually configure the firewall rules and user

credentials on all three firewalls. This time was timed using a

timer and includes the time required to log in to each firewall,

travel to its settings pages, and enter the required information.

The Script Configuration Time is the total amount of time it

 8

took to setup the firewall rules and user accounts on all three

firewalls using the specified script. This time was timed using

a timer and includes the time required to configure the script,

execute it, and confirm that the configuration was successful.

Regarding Time Saved, we considered that to be the

difference between the time required for manual

configuration and the time required for script configuration.

It indicates the amount of time saved by utilizing the script as

opposed to manual setup. Number of Errors int he manual

configuration is the proportion of user accounts and firewall

rules that were manually configured erroneously or had to be

reconfigured. It was computed by tallying the number of

manual configuration mistakes and fixes and dividing by the

total number of user accounts and firewall rules manually

established. For the automated configuration, is the

proportion of user accounts and firewall rules that were

wrongly configured or required reconfiguration during the

script configuration procedure. It was determined by dividing

the number of mistakes or fixes made during script

configuration by the total number of user accounts and

firewall rules automatically generated by the script.

These values were calculated based on a hypothetical

situation and are intended to offer an approximation of the

possible time savings and other benefits of utilizing the script

vs manual setup. Real outcomes may vary based on a number

of variables, such as the exact configuration requirements of

the firewalls, the skill and efficiency of the individual

executing the manual setup, and the script's dependability and

performance, among others. The provided table concludes

that the automated configuration strategy saves time, lowers

mistakes, and increases firewall availability. Also, the MTBF

is raised, indicating that the technique to automated setup is

more trustworthy. Higher production rates and increased

productivity, a more effective use of materials, improved

product quality, and enhanced safety are a few of the

advantages typically associated with automation.

VI. CONCLUSION AND FUTURE WORK

The provided script that is presented in this paper is

compatible with multiple pfSense firewalls setup as part of a

distributed firewall. In this circumstance, the script must be

able to connect with each pfSense firewall in the distributed

firewall configuration and make the necessary configuration

modifications. To do this, the script comprises a section to

add a loop that iterates over each pfSense firewall in the

distributed firewall configuration and makes the necessary

configuration modifications on each one. The new logic to the

script retrieves the IP address or hostname of each pfSense

firewall, then uses that information to establish a connection

with the firewall and make the necessary modifications. Our

strategy depends on the unique needs of our distributed

firewall configuration, as well as the tools and technology we

employ to administer it.

Our proposed script provides an automated way to

configure user authentication in pfSense, but there are always

areas for improvement. Error Handling is an important topic,

because the script might be enhanced by incorporating more

robust error handling to handle situations in which the script

meets unexpected input or problems during execution. For

instance, the script may be updated to report errors to a file or

send an email to the administrator when a mistake occurs. The

script might be made more flexible to provide greater

customization based on the organization's needs. For

instance, the script may be altered to take command-line

parameters for choosing the LDAP server, the base DN, and

other LDAP setup variables. While the script utilizes best

practices for security and password management, further

security measures may be incorporated to further enhance the

security of the user authentication system. For instance, the

script may be updated to utilize encrypted routes of

communication between the firewall and the LDAP server.

Another improvement that can be considered the

implementation of extra features. Based on the organization's

requirements, the script may be enhanced with additional

functionality. For instance, the script might be updated to

establish extra firewall rules depending on user traits or to

create groups or roles within pfSense. The script provides a

great starting point for automating user authentication

settings in pfSense, but there is always space for enhancement

based on the organization's particular requirements.

The script we provide for the distributed firewalls does not

directly address the LDAP constraints of pfSense. It does,

however, enable network administrators to implement LDAP

authentication for numerous pfSense firewalls in a distributed

firewall configuration using a single LDAP server, which can

improve the efficiency of administration and authentication

procedures. In addition, the script may assist in enhancing the

firewall's security by enforcing strong password regulations

and performing automated password updates. Unfortunately,

the script does not address any restrictions regarding the

unique capabilities and features of the LDAP integration in

pfSense. Many measures can be used to solve the LDAP

constraints of pfSense. It is important to upgrade to the most

recent version of pfSense since later versions may have

enhanced LDAP integration features that alleviate some of

the restrictions. As pfSense permits the use of other

authentication servers, such as Active Directory, in place of

the built-in LDAP authentication, it may be possible to

employ external LDAP authentication solutions with more

extensive features and capabilities. LDAP is a regularly used

authentication mechanism however, there are other ways that

may be used in place of or in addition to LDAP that can help

alleviate the constraints. For instance, RADIUS or Security

Assertion Markup Language (SAML) might be employed to

provide a more robust and versatile authentication solution

[22]. Custom scripts or plugins may also be created to expand

pfSense's LDAP interaction capabilities. This may entail

writing scripts to automate the setting of LDAP integration or

plugins that extend the LDAP integration in pfSense with

extra features and capabilities.

ACKNOWLEDGMENT

The authors would like to extend their heartfelt gratitude to

the reviewers who remained anonymous for the time and

effort they put into this study as well as for their helpful ideas,

which helped the research work become significantly more

valuable.

 9

REFERENCES

[1] P. Radoglou-Grammatikis et al., “Defending

Industrial Internet of Things Against Modbus/TCP

Threats: A Combined AI-Based&Detection and

SDN-Based Mitigation Solution,” SSRN Electronic

Journal, 2022, doi: 10.2139/ssrn.4141459.
[2] Erick Engelke, Enterprise Delphi Databases: With

mORMot and Elevate Web Builder, 1st. ed.

CreateSpace Independent Publishing Platform,

North Charleston, SC, USA, 2016.

[3] Cloudflare, “What is access control? | Authorization

vs authentication,” 2023.

https://www.cloudflare.com/learning/access-

management/what-is-access-control/ (accessed Feb.

17, 2023).

[4] “Virtual Private Networks,” in Hands on Hacking,

Wiley, 2020, pp. 251–281. doi:

10.1002/9781119561507.ch8.

[5] Netgate, “pfSense® - World’s Most Trusted Open

Source Firewall,” 2022. https://www.pfsense.org/

[6] Netgate, “LDAP Authentication Servers,” 2023.

https://docs.netgate.com/pfsense/en/latest/usermana

ger/ldap.html (accessed Feb. 10, 2023).

[7] A.-D. Tudosi, D. G. Balan, and A. D. Potorac,

“Secure network architecture based on distributed

firewalls,” in 2022 International Conference on

Development and Application Systems (DAS), May

2022, pp. 85–90. doi:

10.1109/DAS54948.2022.9786092.

[8] M. A. Thakur and R. Gaikwad, “User identity &

lifecycle management using LDAP directory server

on distributed network,” in 2015 International

Conference on Pervasive Computing (ICPC), Jan.

2015, pp. 1–3. doi:

10.1109/PERVASIVE.2015.7086970.

[9] Oracle, “Managing Password Policies,” 2018.

https://docs.oracle.com/middleware/11119/oid/admi

nister/pwdpolicies.htm (accessed Feb. 15, 2023).

[10] A. P. Paramitha, A. F. Rochim, and A. Fauzi,

“Design and Implementation Network

Administrators Account Management System Based

on Authentication, Authorization, and Accounting

Based on TACACS and LDAP,” IOP Conf Ser

Mater Sci Eng, vol. 803, no. 1, p. 012040, Apr.

2020, doi: 10.1088/1757-899X/803/1/012040.

[11] I. Ganchev and M. O’Droma, “Third-Party AAA,

Charging and Billing for Future Consumer-Oriented

Wireless Communications,” in 2022 30th National

Conference with International Participation

(TELECOM), Oct. 2022, pp. 1–8. doi:

10.1109/TELECOM56127.2022.10017326.

[12] G.-C. CRISTESCU, V. CROITORU, and V.

SORICI, “Simulating the Dynamic Assignment of

IPv4 Addresses in an AAA-RADIUS Solution

Based on LDAP and Legacy Authentication

Protocols,” in 2018 International Symposium on

Electronics and Telecommunications (ISETC), Nov.

2018, pp. 1–4. doi: 10.1109/ISETC.2018.8583865.

[13] M. F. Monir and T. A. Ishmam, “Exploiting Link

Diversity in IEEE 802.11 WLAN using

OMNeT++,” in 2022 IEEE 10th Region 10

Humanitarian Technology Conference (R10-HTC),

Sep. 2022, pp. 355–359. doi: 10.1109/R10-

HTC54060.2022.9929505.

[14] RedHat, “What is lightweight directory access

protocol (LDAP) authentication?,” 2022.

https://www.redhat.com/en/topics/security/what-is-

ldap-authentication (accessed Feb. 10, 2023).

[15] Y. Pandhare, P. Pujari, A. Bawa, and A. Save, “A

Secure Authentication Protocol for Enterprise

Administrative Devices,” in 2022 8th International

Conference on Advanced Computing and

Communication Systems (ICACCS), Mar. 2022, pp.

358–364. doi:

10.1109/ICACCS54159.2022.9785147.

[16] IBM, “Distinguished names (DNs),” 2021.

https://www.ibm.com/docs/en/i/7.2?topic=concepts-

distinguished-names-dns (accessed Feb. 05, 2023).

[17] Wikipedia, “X.500,” 2014.

https://en.wikipedia.org/wiki/X.500 (accessed Feb.

12, 2023).

[18] LDAP.COM, “LDIF: The LDAP Data Interchange

Format,” 2022. https://ldap.com/ldif-the-ldap-data-

interchange-format/ (accessed Feb. 05, 2023).

[19] DataTracker, “The LDAP Application Program

Interface,” 2013.

https://datatracker.ietf.org/doc/rfc1823/ (accessed

Feb. 17, 2023).

[20] Netgate, “Netgate Documentation,” 2023.

https://docs.netgate.com/ (accessed Feb. 15, 2023).

[21] Python Software Foundation, “pprint — Data pretty

printer,” 2023.

https://docs.python.org/3/library/pprint.html

(accessed Jan. 05, 2023).

[22] CISCO, “RADIUS, TACACS+, LDAP, RSA,

SAML, OAuth 2, and DUO,” 2023.

https://www.cisco.com/c/en/us/td/docs/dcn/aci/apic/

6x/security-configuration/cisco-apic-security-

configuration-guide-60x/tacacs-radius-ldap-60x.pdf

(accessed Jan. 10, 2023).

