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Abstract

The Non-Auto-Regressive model (NAT) for machine translation offers increased effi-
ciency compared to autoregressive models but faces challenges related to target-side
dependencies. Two issues arise: over and under-translation; and a multi-modal
problem of natural language. To mitigate these problems, previous researchers have
made extensive efforts, particularly with the Dependency Awareness Decoder (DAD)
model. While these models focus on retaining target-side dependencies to enhance
performance to some extent, they still leave two gaps in cross-lingual translation
tasks: word embeddings in shared embedding space and shared character sequences.
This paper proposes two solutions to address these issues, namely adaptation from
the Ernie-M model and data augmentation involving language BPE(LBPE), respec-
tively. Additionally, the paper explores their combined effect, enabling language
prompts to help the model distinguish tokens from different languages and cluster
words from a semantic perspective. Thus, the Word-alignment Language-Prompted
DAD (WDAD) model with data augmentation is proposed, which indeed demon-
strates progress.

Combination model of LBPE and CAMLM contributes approximately +0.5 BLEU
score points on the WMT14 De-En pair dataset, and CAMLM contributes approxi-
mately +1 BLEU score points on the WMT16 En-Ro dataset, while the combined
model exhibits limitations in its interaction with the combined work due to the inap-
propriate data augmentation strategy of LBPE, as evidenced by a mixed data strategy
and language embedding layer, and the baseline data augmentation strategy. But
this does not deny the principle of LBPE and any effects LBPE made at all. It is just
a sign that there are better solutions for data augmentation strategy. Additionally,
the combined model faces challenges in the word clustering issue arising from con-
tradictions in traditional encoding strategies in translation and CAMLM. To address
this, the paper proposes an idea with conducting unfinished experiments, leaving it
for the future.
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Chapter 1

Introduction

1.1 Motivations

The Machine Translation (MT) task, as discussed in [1], is a critical issue in the
field of Natural Language Processing (NLP). It involves the automatic translation
of text from one natural language to another, and it has seen rapid advancements
alongside the development of deep learning models. In the beginning, rule-based
models[2] were the first translation models based on linguistic rules. They retrieved
token information, including semantics and grammar, from a dictionary and used it
for translations. However, designing effective rules is time-consuming, and a signif-
icant amount of linguistic information needs to be inserted manually. Phrase-based
models[3], also known as statistical methods, apply the Bayes Theorem to decode
sentences. They are more efficient than the rule-based models but may have errors
in the translation results. As deep learning develops, numerous neural networks
have been applied to address the challenges of Neural Machine Translation (NMT),
with certain models even capable of facilitating translation between multiple lan-
guages. NMT includes the Cross-lingual Machine Translation (XMT) task, which has
witnessed rapid growth [4], along with related tasks like cross-lingual information
retrieval, driven by the diverse array of languages spoken around the world. Typical
methods include RNN and LSTM[5], which learn information for entire sentences
but may introduce errors in handling long-term dependencies. The attention mech-
anism resolves this issue by calculating an attention matrix over the entire sentence.
Therefore, Transformer models[6] based on the attention mechanism utilize the at-
tention mechanism to address this issue.

Transformer models [6] are currently the most widely used methods for NMT and
XMT. The base transformer includes an encoder that maps the source language to
an embedding space and a decoder that decodes auto-regressively from another em-
bedding space to the target language, word by word. The attention mechanism is
used to learn the connections and semantic similarities between the sentence itself
and sentences from language pairs. It allows for long-dependencies and serves as
the foundation of large language models such as Bert[7], which achieve outstand-
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Chapter 1. Introduction 1.1. MOTIVATIONS

ing performance on XMT and related word embedding tasks. Furthermore, it is
universally applicable for tasks in NLP such as Question & Answer, Named Entity
Recognition, and so on.

The classical transformer is an auto-regressive translation(AT) transformer model,
which excels in NMT performance compared with numerous deep learning meth-
ods, such as RNN, LSTM[5]. Target tokens are decoded sequentially, implying a
one-by-one generation approach. Subsequent tokens draw upon information from
previously decoded tokens, leading to time-consuming processing, particularly for
long target sentences.

In contrast, non auto-regressive translation(NAT) methods are designed to expedite
decoding by generating target tokens simultaneously in one pass. Multiple methods
demonstrate acceleration speeds of up to 21 times[8].

However, NAT methods sacrifice the decoder’s accuracy because they fail to capture
the dependencies from target languages [9]. In other words, NAT needs to tackle the
problem of lack of information and instructions given by the target side. This causes
two main drawbacks in NAT performance. One is over-translated (repeatedly trans-
lated) and under-translated (neglected translated). For example, thank you might be
translated into Danke Danke, where thank was over-translated and you was under-
translated. The NAT would output consecutive repeated tokens or not output some
of the important tokens because the model is not aware whether a certain word has
been decoded, therefore it would keep decoding one word and occupy the whole
sentence length limitation. Consequently, some words would be translated many
times leaving others no space. But this could be avoided by AT since the previously
decoded tokens would instruct the later decoding together with the output of the
embedding. The other is the multi-modal[9] translation problem, where the natu-
ral language is flexible and uses different expressions to convey the same meaning.
Note that the term multi-modal here does not refer to the conventional mean-
ing of multi-modality, such as the combination of images and texts. Instead,
in the context of the NAT field, it represents a specific expression denoting the
presence of multiple choices or potential states during decoding, reflecting lin-
guistic diversity. Therefore, there would be many correct translation formats for
one sentence. For example, Vielen dank could be either translated into many thanks
or thank you but the NAT model would have difficulties in the alignment of the
words´ translations. Therefore, different supervisions, which are the multiple dif-
ferent correct translation targets used to calculate the loss, would confuse the NAT
model, to make both of the words aligned to thank, while the AT model would be
able to see the context and deterministically generate the target sentence.

NAT boasts impressive efficiency, but there is still room for improvement in terms
of accuracy with a notable performance decrease (approximately 6 BLEU[10] score
decrease in NMT task) compared to AT, as demonstrated in a study by Ren et al.
[11]). Therefore, this research aims to design strategies to address the challenges
arising from target-side dependencies.

To alleviate the problem of a lack of internal dependencies in the target language,
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Chapter 1. Introduction 1.1. MOTIVATIONS

significant efforts are made in many aspects. The different types of strategies are Iter-
ative Refinement[12], Data Distillation[13], Learning Strategies, Loss Changes and
so on (more details in Section 2.1). The Iterative Refinement process takes the out-
put of the decoder as the input for the next iteration, which can be time-consuming
and may diminish the advantages of NAT. In contrast, one-pass NAT models decode
the target sentence once and achieve the theoretically maximum decoding speed.
Notably, the Dependency-Aware Decoder (DAD) focuses on one-time generation of
targets[14]. It uses filtering to capture similarities between source and target lan-
guages and uses a carefully designed three-phase training process to better capture
the context. (More details in Section 2.2). This is the core base model that motivates
the research presented in this report.

Despite contributing significantly to improving NAT models, DAD still has two gaps:
first, words tend to cluster by their meaning within the same language, but it would
be ideal if they clustered independently of language; and second, the same char-
acter sequences carry different meanings in different languages. More specifically,
words from different languages have distinct vector representations within the same
embedding space. Distinguishing them saves memory and helps cross-lingual to-
ken learning. However, word representations from the same language often tend
to cluster together applying conventional XML training strategy. [15], which con-
tradicts our expectation that words conveying the same meaning should cluster to-
gether. Additionally, many cross-lingual corpora share numerous identical character
sequences that convey disparate meanings but might be mistakenly recognized in
their meaning in NMT. For instance, with regard to English and French, ant in En-
glish is a variant of anti, signifying before (e.g., antibody), while in French, it pertains
to specific agents (e.g., enseignant).

These two issues are considered in XLM training models[16], and this work will fo-
cus on addressing these issues. Two approaches are motivated for the two issues
respectively. First, the XLM pretraining model utilizes language embedding to un-
derstand cross-lingual corpora better. At the same time, Ernie-M[17] uses a special
attention strategy to prevent information leakage, which refers to the exposure of
linguistic features within the same language, which has the potential to recluster
words based on language rather than solely on semantic factors. This process forces
the model to learn not only cross-lingual semantics but also language-specific struc-
tures Drawing inspiration from Ernie-M[17], a component akin to Cross-Attention
Masked Language Modeling (CAMLM) is integrated into the original DAD model.
This enables the model to rely solely on tokens from the other language when learn-
ing word embeddings from a single language token. In other words, this strategy
facilitates easier word alignment in terms of semantic meaning. This approach com-
pels the model to cluster words from diverse languages, as it lacks language infor-
mation for its original language. CAMLM has proven its utility [17], across various
NLP tasks, such as Cross-Lingual Natural Language Inference (XNLI), Named Entity
Recognition (NER), and in NMT tasks as well. Second, a novel format for Byte-
pair Encoding (BPE)[18] tokens is designed to distinguish identical character se-
quences originating from different languages. This is inspired by data augmentation
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strategies, where manipulating data significantly influences the performance of the
model.By appending a distinct language indicator to BPE tokens, the downstream
process can readily discern the language of the token, thereby enlarging the size of
the vocabulary and providing better capabilities for word representation. Therefore,
the model would not be confused about the meaning of one token if it represents dif-
ferent meanings for different languages. This not only enhances the effectiveness of
the attention mechanism in DAD but also aids in distinguishing the diverse semantic
meanings conveyed by the same character sequence.

1.2 Contributions

To overcome the challenges for NAT and XML as presented above, this report presents
five main contributions:

Improve word representation DAD employs a shared embedding space and a joint
shared dictionary for language pairs, aiming to acquire clearer relations between
the source and target languages. However, it is sub-par because the words in shared
embedding space tend to cluster by their meaning within one language due to the
training strategy. To mitigate the problem, rather than directly utilizing Bert-base
parameters for sentence tokenization and word embedding extraction, this study in-
tegrates components resembling CAMLM into DAD. This integration serves to group
words that convey identical semantic meanings within the embedding space. Section
3.2 of the report presents these components, while Section 3.3 explains how the two
models are combined. The results show that the CAMLM component could decrease
the distance of the word embedding cluster centre in the shared embedding space,
thus enhancing the final result.

Word alignment pre-trained strategy The CAMLM component demonstrates its
ability to provide new word embeddings. However, traditional DAD training strate-
gies could impair this capability, as discussed further in Section 4.5. To address
this issue, this study introduces a pre-training strategy that explicitly supervises the
model training using a provided word alignment dictionary. This approach ensures
that the model places emphasis on avoiding the reclustering of word embeddings
based on language during training. Details of this method are presented in Section
3.2.

Mix data set strategy Training CAMLM with DAD might compromise the effects of
the CAMLM-like module. This could occur because CAMLM training involves encod-
ing processes for a multilingual corpus, whereas DAD training, a translation task,
focuses solely on encoding the source-side language. DAD may potentially segregate
words based on the source and target languages without explicit indication. Hence,
this work proposes a strategy to mix data so that multiple languages can coexist
on both the target and source sides. For instance, in an En-De task, English could
be considered both the source and target language within the same training epoch.
This approach aims to alleviate the interference caused by the dominance of a single
language on the same side for CAMLM.
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Design data augmentation strategy: Language-specific BPE(LBPE) tokens The
study aims to enhance the original BPE tokens by incorporating a distinct language
signal from its source language. This addition seeks to mitigate ambiguity aris-
ing from identical character sequences across different languages. The introduced
Language-Based BPE (LBPE) contributes to improved token differentiation within
the shared embedding space, particularly when dealing with more than two lan-
guages. At the same time, it doubles the vocabulary size compared to the original
one, thereby increasing the number of parameters to be trained in the embedding
layer and endorsing the model more capability to extract language features. Further
discussion on this topic will be provided in Section 3.2. Our results show that LBPE
has +0.5 BLEU score improvement.

Design Language Embedding layer Though LBPE plays a role in distinguishing
tokens from different languages, using LBPE would significantly increase the param-
eter size by a large margin (twice as large in the WMT14 dataset). Consequently,
this increase could introduce extra changeable variables and more training time.
This work introduces a language embedding layer inspired by LBPE but reduces the
parameter size back to its original dimensions while maintaining the effects of the
LBPE to prove whether LBPE would be an appropriate data augmentation strategy.

1.3 Report Structure

The report is divided into 5 chapters. Chapter 2 describes a comprehensive overview
of the theoretical background most relevant to this work. This includes a compar-
ison between NAT and AT, along with their related technical background involving
Transformers (Section 2.1), a detailed technical structure of DAD (Section 2.3), a
detailed explanation of the masked language model CAMLM (Section 2.4), and an
overview of the shared embedding space (Section 2.5).

The critical methodology of the thesis is introduced in Chapter 3. It outlines the
integration of the two approaches with DAD and also the mixed data strategy with
the language embedding layer. Chapter 4 presents the evaluation and relevant com-
parisons among the various integration methods. Lastly, Chapter 5 highlights the
results and outlines potential future research directions. This research project has
no ethical issues.

1.4 Logistics

This research is motivated by a fundamental problem in NAT, specifically the target-
side dependency. DAD is a classical method that applies NAT in the XML field,
addressing some superficial issues such as over-under translation and multi-modal
problems. However, DAD encounters issues with word embedding and shared char-
acter sequences. Therefore, this research initially proposes CAMLM and data aug-
mentation, specifically LBPE to address these issues individually and conducts ex-
periments on each strategy separately and in combination.
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During experimentation, these two strategies perform well following with theoretical
analysis, since the main issues are DAD issues, but limitations are observed for both.
Subsequently to make the models better, three additional ideas are proposed: a
language embedding layer, word alignment supervision, and a combination of all
(WDAD). The initial experiments reveal that LBPE is not the best choice for data
augmentation but plays a role in distinguishing shared character sequences. Ongoing
research is being conducted for the remaining two ideas.
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Chapter 2

Background and related works

This section will delve into the technical background and related literature. The
primary focus of this work lies in the NAT model applied to translation tasks, partic-
ularly emphasizing enhancements in word embeddings within a shared embedding
space. To begin, the work will review the widely recognized translation model,
Transformers[6], serving as the foundational model adaptable to AT and NAT strate-
gies. With knowledge of the technicalities in the base model, a careful comparison
between NAT and AT will be conducted to elucidate the challenges inherent in NAT
for translation, particularly highlighting the word alignment issue due to the lack
of target side dependency in the decoding process of Transformers. Following this
analysis of word alignment issues, attention will shift towards exploring solutions
within the realm of shared embedding spaces to address the word embedding and
shared character sequences challenges faced in NAT-based translation models.

2.1 Transformers

The traditional transformer[6] is shown in Fig2.1. It involves an encoder and de-
coder with main components with multi-head attention and cross attention mecha-
nism grasping the connection between language pairs. Subsequently, after getting
X ′ = Embed(X)+Pos adding positional encoding to word embedding, whose shape
is Rd, where d is the hidden dimension of the encoder, it would perform multi-head
attention as follows:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i , KWK
i , V W V

i

)[6]
where WQ

i ∈ Rdmodel∗dq ,WK
i ∈ Rdmodel∗dk ,W V

i ∈ Rdmodel∗dv and WO
i ∈ Rhdv∗dmodel are

parameters and dq, dk, dv are hidden dimensions of query, key and value respectively,
and h is the number of head. Q ∈ RS∗dmodel , K ∈ Rdmodel∗S, V ∈ RS∗dmodel, where S
is the sequence length, are gained from X ′ together with parameters Wq,Wk,Wv.
Then the output of multi-head attention is passed to the residual network and layer
normalization, and then to the feed forward network. After N stacks of the same
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Chapter 2. Background and related works 2.2. NAT AND AT

structure to get the embedding of the source tokens, the final output of the encoder
Xemb is fed into the cross attention mechanism of the decoder. The decoder’s at-
tention mechanism follows the same principle as the multi-head attention in the
encoder, but it uses masks on subsequent tokens during decoding to maintain se-
quential order. Particularly, there is cross attention mechanism in the decoder that
has the same structure but the Q,K, V is produced by Yhid,Wq, Xemb,Wk, Xemb,Wv

respectively, where Yhid is the current hidden state of the decoder. This aims to in-
corporate the encoder outputs. The decoder has N stacks as well. Then it would
experience the softmax layer to output the target tokens word by word.

Figure 2.1: Transformer architecture[6]

The transformer has been widely used in previous work and proved to be effective
in NMT tasks for its ability to capture the relation between long sequences.

2.2 NAT and AT

With knowledge of the transformer, the base, and the state-of-the-art model used in
NAT and AT, this section will compare the differences between NAT and AT using the
transformer in the translation task to explain the reason for problems raised in NAT.
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2.2.1 AT technical background

The traditional AT model can be formulated as a sequential generation problem
given the source language sequence X = {x1, x2, ..., xN} as a condition. The target
tokens yi in target language sequence Y = {y1, y2, ..., yM} refer to X and the previous
target generated tokens y1, y2, ..., yi−1. The objective of the task is to maximize the
likelihood:

L =
T∏
i=1

P (yi|X, y<i; θ) (2.1)

where θ represents the AT model (commonly a neural network). It clearly shows
that when decoding yi, the model relies on both the source language and the pre-
viously decoded tokens that would gain much target dependency but it cannot be
parallelised since it generates in a sequential order.

2.2.2 NAT background

When compared to AT, NAT enjoys broad application prospects due to its higher
efficiency, as seen in various areas such as Automatic Speech Recognition (ASR)
[19], Dialogue Generation [20], Semantic Parsing [21], and numerous generative
tasks in NLP. Furthermore, it plays a significant role in Neural Machine Translation
(NMT) tasks [9], as it can generate all target tokens in parallel. These strategies
can be applied to existing deep learning models such as transformers [22]. This
would significantly reduce decoding time compared to traditional AT, although it
presents a challenge in capturing target-side dependencies, also known as internal
dependencies from the target side.

The challenge in principle is that NAT would not rely on any previously decoded
tokens but instead generate the target words all in one go. The objective of the task
is accordingly to maximize the likelihood:

L =
T∏
i=1

P (yi|X; θ) (2.2)

where θ represents the NAT model (commonly a neural network) and T is the length
of the target sentences but need to be predicted in the model. T could be formulated
as below:

T (θ) = P (L|X, θ) (2.3)

where more straightforwardly, it aims to learn parameters to map from the length of
the source sentence to that of target length L [23].

Therefore, the inference strategy is slightly different compared with AT. NAT has
no mask and output all the target tokens while AT does have access to the latter
tokens when inferring and only rely on previous tokens. Consequently, the previously
decoded tokens are put in decoding again to be considered in AT but there is only
an initial state in NAT.

9
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Therefore, if the NAT model is used, critical problems include numerous transla-
tion challenges such as the multi-modal problem defined earlier and over/under-
translation [9]. More specifically, since the NAT does not consider previously de-
coded tokens as a condition, generating sentences coherently and ensuring word
alignment becomes more challenging for the decoder. The generation process may
become fragmented and repetitive. Additionally, having multiple sources of super-
vision could confuse the NAT model because it might select sub-sequences of the
sentence, and align them with related target token outputs as translation results.
However, the model combines them without knowing which token has already been
decoded so there could be repeated alignment. Due to the different references and
supervisions, several words may be output repeatedly while others remain untrans-
lated.

These issues are widely researched in the literature. The next subsection will discuss
previous approaches to deal with these issues.

2.2.3 Previous approaches

Since many challenges stem from the loss of target-side dependency, previous efforts
have made significant attempts to restore target-side dependency. This subsection
summarizes the work aimed at mitigating the dependency issue.

The initial solution was introduced in Jiatao Gu etc.’s research [24] and was built
on traditional Transformer models. This solution incorporated a fertility module,
consisting of a one-layer network with a softmax layer, serving as a latent vari-
able to offer additional contextual information from the entire sentence, shown in
Fig2.2. This module provides external cues for aligning word pairs in the language.
´Fertility’ refers to the number of times that the meaning of certain words could ap-
pear in the decoding output. This restriction helps narrow the output distribution
and significantly reduces the generation of repetitive consecutive sequences during
the decoding process.

Mathematically, the loss function of the whole model is shown in 2.4

pNA(Y | X; θ) =
∑

f1,...,fT ′∈F

(
T ′∏
t′=1

pF (ft′ | x1:T ′ ; θ) ·
T∏
t=1

p (yt | x1 {f1} , .., xT ′ {fT ′} ; θ)

)
(2.4)

where pF is the fertility probability and p is the common NAT probability.

As a result, this approach leads to a 1.5-point improvement in BLEU score over
WMT16 data set translation while achieving a 15-fold increase in speed. However,
this method is associated with a single challenge. Despite its success, there remain
multiple valid translation possibilities and variations in reference outputs, which is
the multi-modal problem.

10
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Figure 2.2: Initial solution[24]

There are other aspects of strategies to make up for the two issues followed up by the
original model. Some of them are trying to solve the issue such as multi-modality
directly - Knowledge Distillation, others may focus on the principle problem that
leads to the two issues - target side dependency.

Knowledge Distillation (KD) [13] proves to be a helpful approach in tackling the
multi-modal problem. KD involves preprocessing the dataset ([S, T ′′]) using an AT
model, generating the target language (T ′) with the source language (S) as input.
The output T ′ is deterministic and machine-generated, making it more easily rec-
ognizable by the machine. Consequently, the new language pair [S, T ′] exhibits less
noise and fewer multi-modal problems. An example is that the translation of Vielen
Danke is thank you, instead of several other translation options like many thanks.

Data Distillation is one data augmentation strategy. Other data augmentation meth-
ods include synonym replacement [25], sentence shuffling [26], and more. Feng’s
team [27] summarized approaches to strengthen the data by incorporating syntac-
tic information [28], using an external dictionary for more parallel data [29], and
others. However, these data augmentation strategies require an external model to
process the relevant linguistic features. There are also non-traditional data augmen-
tation methods with the same purpose: to expand the training dataset and enhance
the model’s representation capability. Simultaneously, increasing the number of pa-
rameters can result in a larger language model with more linguistic features, as ev-
idenced in experiments[30]. Consequently, expanding the vocabulary size, which is
another non-traditional method of data augmentation that could potentially improve
performance due to the increased diversity of tokens and enhanced representation
ability, is selected in this research.

Some other approaches are designed to better capture the target side dependen-
cies. Latent Variable: Given that the initial solution for NAT with latent variables
contributes to an increase in BLEU score, there are concepts for the Latent Variable
method that focus on extracting additional conditions from the source side. Nader
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Akoury’s team [31] group the source tokens according to their syntactic informa-
tion. These groups then serve as additional conditions that restrict the generated
tokens in terms of syntax, thus narrowing the potential for over-translation. Chit-
wan Saharia’s team [32] uses a latent variable as prior alignment probability and
applies it for CTC and Importer loss. A sequence of latent variables aids in aligning
words with each other, reducing the likelihood of over-translation. Also, target side
dependency could be represented either semantically or syntactically. DAD model
would be the core method and also the latent-variable method. Yu Bao’s team[33]
designed a quantified vector as a target categorization code, which has a similar role
to Part-of-Speech (POS) tags, to explicitly emphasize the target side syntactic infor-
mation. Though the tags are fuzzy, they instruct sentence generation but they do not
consider the word embedding perspective.

DAD[14] is a fully NAT method that utilizes different attention mechanisms and two
additional phases of training for NMT tasks. This approach operates at the word
embedding level. It first employs a filtering process to create word embeddings
containing relationships with target-side tokens. Once the word embeddings are
prepared, DAD utilizes transformers[6] for the subsequent downstream translation
task. It uses three training phases to better capture the dependencies on the source
side. More details will be discussed in Section 3.2.1. However, Latent variables need
training for additional variables, which requires designs for supervising the training.
There are masked strategies that are commonly used in NLP such as Bert[7] and
only require information from context without additional efforts for deciding the
meaning of latent variables carrying or supervision methods.

Masked strategy: We can not only capture information from the relationships be-
tween source and target side tokens but also extract relationships between tokens
within a single language. The masked strategy[34] proves valuable in comprehend-
ing context. This approach trains the model by consecutively masking the decoder
input, using an n-gram loss function to mitigate the challenge of translating repeated
words. Furthermore, masks can be used to selectively reveal tokens during encoding
to gather more information. GLAT[35] involves glancing at the target’s ground truth
during the initial epochs of training. Consequently, it leverages information from
the target sentences, thereby acquiring additional target side dependencies. As the
training progresses, the ratio of glancing is gradually reduced to zero, transitioning
it into a fully NAT model.

These strategies above focus on the architecture or methods within the model. How-
ever, each model needs supervision from loss between ground truth and predictions.
There are criteria that could suit the NAT work well.

Criteria: Regarding the loss mentioned above, the traditional Cross-Entropy Loss[36]
is not as effective as other criteria. Criteria select different loss functions to guide
model training, including CTC loss[37], aligned Cross-Entropy[38], and more. CTC
has an algorithm to align the lengths of the predicted and ground truth target side
language, resulting in improved loss calculation. Subsequently, gradient descent
becomes more manageable to execute.
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Pre-trained model: Apart from the above aspect requiring special designs, there are
easier ways to leverage a pre-trained model, which can expedite the refinement of
the current model. Pre-trained models transfer information (including target side
dependency information) to aid the NAT model, as demonstrated in the research
by Xiaobo Liang’s team[39]. This joint training benefits from the AT model, which
retains information within the decoder parameters and offers an initialization point
for the NAT decoder.

There are more ways to get help in obtaining information from target side depen-
dency from AT models. The iteration-based model strikes a balance between AT
and NAT approaches, achieving a trade-off between time efficiency and output per-
formance. This model re-uses the output as a condition for decoding refinement,
although it does not achieve the expected speed acceleration. The Levenshtein
Transformer[40] introduces deletion and insertion policies to enhance decoder flex-
ibility. It can dynamically adjust the length of target-generated tokens and revise
sentences by emulating human actions like undoing, deleting, or replacing words.
However, each refinement stage requires an iteration, resulting in time consump-
tion. Other methods have the same time consumption flaw. For example, the masked
strategy[41] involves applying masks to tokens with the lowest confidence, initiating
iterations to regenerate them using information from other generated target tokens.
Consequently, this method gains more target dependencies but necessitates multiple
iterations to achieve desirable generation quality. The research reported here focuses
on fully NAT instead of iterative decoding since it sacrifices efficiency and would be
similar to AT if the iterations are numerous.

The aforementioned solutions primarily address target-side dependency issues with-
out a significant emphasis on the translation aspect. However, there are other chal-
lenges in translation tasks stemming from multilingual aspects and the broader field
of XMT, which will be thoroughly discussed in the following section.

2.3 XMT, shared embedding and word alignment

In traditional classical XMT tasks, Byte-Pair Encoding (BPE) is a widely chosen
method for the encoding process. BPE is a tokenization technique used to segment
long words into parts that may reveal some of the meanings within those words,
such as prefixes or suffixes. By employing this approach, BPE tokens become shorter
and shared, thereby better representing the word’s meaning within the embedding
space. For instance, the words art and artist would both share the BPE token art@@,
with artist related to the meaning of art, and artist can be considered a derivative
form of art. Utilizing BPE tokenization conserves memory by reducing the size of the
dictionary and provides cues to the embedding space to cluster words. Many NMT
models, including DAD, adopt this tokenization method, whether they use separate
or shared embedding spaces.

In contrast to conventional NMT models, DAD maps both the source and target
languages onto a joint embedding space, enabling the model to readily identify

13



Chapter 2. Background and related works2.3. XMT, SHARED EMBEDDING AND WORD ALIGNMENT

words conveying identical meanings across different languages. This joint embed-
ding space, also referred to as a shared embedding space, falls within the category of
cross-lingual embedding spaces. Traditional cross-lingual embeddings employ sepa-
rate spaces for distinct languages and establish mappings between them. However,
Aitor’s team[42] highlighted the challenges associated with word alignment in this
approach.

Cross-lingual Pre-training[43] adds a language label as a condition, in addition to
token embedding and position embedding. It largely alleviates English-centric bias
by training the word in a shared embedding space cross-lingually. Due to the effects
of shared or joint embedding space, the model built in this research uses DAD joint
embedding space. However, this joint embedding space has one severe issue[44]
which is that the words tend to cluster according to language, with the language
label as a signal, while the shared embedding space should represent the semantic
similarity of words.

There is previous work on improving cross-lingual representation. Instead of com-
paring single words, INFOXLM[45] uses contrastive learning, encouraging sentences
that express similar meanings to cluster and convey opposite meanings to disperse.
XLM-K[46] designs another approach to align the relations between different lan-
guages. They built a knowledge graph with entities from the multi-lingual corpus
and linked shared related entities as multi-lingual knowledge. By object entailment,
the knowledge graph will be more complete and contribute to the XLM model as a
pre-training model. However, it requires a large size corpus and many pre-trained
tasks. However, these works are comprehensive and not easy to be applied with
other models. Also, it requires additional data such as knowledge graph construc-
tion.

CAMLM model

Ernie-M[17] tackled the previous problem by using CAMLM efficiently. It would only
refer to information from different language tokens when training certain language
tokens. The attention matrix would be partially masked for the tokens in the same
language while the attention scores are approachable from the other language. This
would force the model to learn the semantic meaning more with less distraction
from the language itself. This CAMLM-like method would help to solve the gap that
DAD has. More details are illustrated in Section 3.2.2.

Word alignment As the CAMLM component primarily addresses the word clustering
issue to improve word alignment, there has been previous work dedicated to word
alignment strategies. Lucia’s team [47] proposed three methods: one-on-one align-
ment, one-language-on-all-the-other-tokens alignment, and a combination of both
for multilingual translation. The one-to-one alignment, depicted in Fig. 2.3 (a), is
particularly relevant to the research conducted in this work, whereas the (b) and (c)
are the latter two strategies.
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Figure 2.3: One2one alignment[47]

It provides a supervised learning approach for explicit word alignment; however, it
requires an external word alignment dictionary. Statistical methods are mentioned
in Franz J. O’s team’s work [48]. The Dice coefficient [49] is selected to measure the
aligned word pairs, as shown in Equation 2.3:

dice(i, j) =
2 · C (ei, fj)

C (ei) · C (fj)
[48]

where e and f represent two sentences and C(ei, fj) means the co-occurrence of
count of two words ei and fj. Subsequently, by utilizing the largest Dice coefficient,
the word alignment can be obtained as a pre-trained vocabulary dictionary. There
are existing libraries for word alignment such as GIZA++1

1https://www2.statmt.org/moses/giza/GIZA++.html
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Chapter 3

Methodology

3.1 Issues to address

In the previous section, this work briefly introduced NAT and its related previous
work with gaps to be filled. In this chapter, the work builds upon this and introduces
the NAT problems to be solved in XMT translation task. Building upon the DAD
model while applying NAT model in XML field, there are still two outstanding issues
that need to be resolved. Solving the two issues would mitigate the previous two
problem to some extent at the same time.

Word Representation

In a joint embedding space, and the traditional approach of word embedding train-
ing in XMT, words tend to cluster together based on language more than on semantic
meaning. For instance, words like cat and dog might cluster in the ”animal” section,
but cat and Le chat could be distant from each other as they are not sufficiently sim-
ilar from a language perspective. This could impact the performance of the DAD
because when it establishes relationships between source and target tokens exclu-
sively, aligning words might become challenging due to information leakage from
tokens within the same language. The CAMLM-like module in my research model
tries to solve this issue because it could eliminate the effects of language and em-
phasize the role of the meaning of words. (More discussed in Section 3.2.3)

Same character sequences in different languages

The same character sequences share embeddings in the joint embedding space, even
though they might differ significantly across different languages. This could confuse
the model during its processing of such sequences. While the DAD approach might
provide some mitigation, it could complicate the filtering process. Sequences that
are present in the source language need to be filtered out, but if they reappear in
the target language, they should be reintroduced. LBPE would distinguish the same
character sequences according to their language perspective which is a language
prompting.
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3.2 Model Design: Word-alignment emphasized De-
pendency Aware Decoder (WDAD)

3.2.1 DAD introduction

The issue of separating points in the shared embedding space arises from the DAD
methods themselves. It is further mathematically demonstrated here, building upon
the illustration in Fig3.1.

Figure 3.1: DAD attention[14]

Filtering process

Before the core transformers-like module for translating, DAD applies an attention
mechanism between the output of the encoder and target tokens embedding to cap-
ture the semantic similarity with a filtered dictionary. The filtered dictionary aims
to keep only target tokens embedding to avoid information leakage from source to-
kens in the attention mechanism. It only finds relations between the output of the
encoder and the target side tokens regardless of the source side tokens’ information
leakage.

Mathematically, DAD[14] provides details of the attention mechanism and is shown
in Fig 3.1. It selects either the output of the encoder or copies the original embedding
of the tokens X as variable z. Then a filtered dictionary is created with only the
target token index inside, which filters the embedding matrix and leaves only the
target token column. This could pose an issue as shared character sequences may
originate from both source and target tokens, leading to confusion. Evidence shows
that out of a 39k-sized dictionary in En-De WMT14 translation dataset, only 4k
tokens were filtered out. This indicates the effects of the filtering process are not
brought out the most effectively because many shared character sequences cannot
be filtered out. Solving this problem would contribute to the goals of this work.
After filtering unrelated words, it sets the query generated from z and key and value
in the attention-like mechanism generated from the filtered embedding matrix to
realize the attention mechanism to get z′. z′ therefore would contain information
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from the source side and the target tokens´ information. More specifically, it could
be formulated as follows:

z′ = softmax(Wq · z · Emb′) · Emb′T

This filtering process, together with the attention mechanism, emphasizes the con-
nections between target side tokens and source side information during encoding
within the shared embedding space to achieve improved alignment. The attention
mechanism attempts to provide an initial decoder state, in target embedding space,
based on the similarity of source words to target words. As a result, the information
from the encoder becomes more focused on target side details during decoding.

Three phase training

After the process of attention mechanism with the filtered dictionary, in other words,
the preparation for the input for the encoder, DAD would experience three phases
of training. The first two would be at-forward and at-backward which aim to extract
information from previous and later tokens and is the preparation for the last phase.
Then the final phase NAT will be bi-directional. The DAD training phase is shown in
Fig3.4

Figure 3.2: DAD three phase training[14]

The diagram illustrates that the at-forward phase employs a training strategy, such
that when calculating attention scores, tokens can only refer to the previous tokens.
In contrast, in the at-backward phase, tokens can only refer to the attention scores
of the subsequent tokens. These methods emphasize information extraction from
one side of the sentence, resembling the role of the pre-training stage. The final nat
training phase combines the two, allowing tokens to reference both preceding and
succeeding tokens, which aligns with the traditional transformer strategy.

Flaws

These two innovative strategies, the filtering process and three phases of training,
are introduced within shared embedding spaces, where tokens from both source
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and target languages are comparable, providing opportunities for calculating cross-
lingual similarity scores. This enhancement improves alignment. However, though
the attention mechanism aligns target tokens with source sentence semantic mean-
ing, it does not bring together words with similar meanings in the embedding space.
It can be visualized in Fig3.3 below.

Figure 3.3: Vallina DAD

These are the directions for improvement on word embedding. New versions of word
embedding could provide indications of which words have been decoded, thereby
mitigating issues of over- or under-translation. This challenge represents a critical
domain in XMT, shared embedding spaces, and NAT.

3.2.2 Shared embedding space

The key strategy in this work revolves around employing a shared embedding space
instead of separate embedding spaces for individual languages. It’s important to
note that the filtering process operates exclusively within the shared embedding
space, leveraging a unified vocabulary size to eliminate unrelated tokens. There are
several other reasons for opting for a shared embedding space in this work.

Firstly, a shared embedding space facilitates linking equivalent tokens, enabling
more accurate alignment. Tokens share the same embedding space, ensuring uni-
form semantic representation across languages, and aiding in capturing cross-lingual
relations. While separate embedding spaces could achieve alignment through cross-
attention mechanisms from the encoder side, the lack of integration between differ-
ent languages’ embeddings is a limitation.
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Secondly, while separate language embedding spaces preserve language-specific fea-
tures due to tokens originating solely from a single language, this presents a chal-
lenge to address. The objective is for the embedding space to convey semantic mean-
ing while minimizing the influence of language-specific information.

Third, utilizing a shared embedding space results in a reduction in the number of
parameters, which is less than doubling the vocabulary size required for a separate
embedding space. This represents a trade-off between saving the number of param-
eters and sacrificing the ability to represent words distinctly.

In the context of DAD, the full potential of these advantages remains underutilized,
as the traditional encoding methods employed lack modules emphasizing cross-
lingual relations. The subsequent section will delve into related models to address
this issue.

3.2.3 CAMLM model

The issue of the cross-lingual shared embedding space can be alleviated by the use
of a cross-lingual model. Cross-lingual embedding aims to cluster word embeddings
that are more closely related in terms of semantic meaning, making word alignment
easier. The CAMLM model is one of the cross-lingual models designed to facilitate
the learning of semantic information between different languages. Building upon
the introduction in Section 2.5, a more detailed explanation of CAMLM is presented
in Fig3.4.

Figure 3.4: CAMLM[17]

The xi and yi represent tokens from two different languages. The language pair
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[X, Y ] with masks is input in the CAMLM model. The M2, which is the mask of the
language of X can only refer to the other language tokens y4, y5, y6, y7, and the same
is as M5,M6. The model would need to predict the tokens of the mask and train the
word embedding. Feeding those into embedding layers and transformer layers, the
model would predict the masked tokens. However, the self-attention mechanism in
the transformer of CAMLM model is slightly different. This could force the model
to focus on the semantic similarity between different languages. In other words,
the tokens would focus more on multi-lingual semantic relations to cluster based on
word meaning but not language.

The attention matrix is depicted in Fig3.5, where the dark blue colour represents
attention scores utilized in multi-head self-attention, while the light blue colour in-
dicates attention mechanisms that are blocked, which is similar to the concept of
masked attention. For example, M2 could only get information from tokens in Y ,
therefore, the cross attention scores between M2 and X are coloured light blue while
the score of (M2, Y ) pairs are coloured dark blue.

Figure 3.5: CAMLM attention

The model employs a specialized masked attention strategy to achieve the goal of
word alignment rather than language-based clustering because it prevents the words
from acquiring information from the tokens in the same language. This could be
shown in Fig3.6. The blue points represent German tokens, while the red points
represent English tokens. It can be observed that the words cluster closer regardless
of their language.
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Figure 3.6: CAMLM pure

3.2.4 Word alignment supervision

However, word alignment is compromised by the subsequent DAD training strategy
because the traditional DAD training has the source tokens from the same language,
unintentionally leads the word reclustered according to language. The model there-
fore introduces explicit word alignment supervision during DAD training to preserve
the word alignment features. As discussed in Section 2.3, the approach initially es-
tablishes a pre-trained word alignment dictionary using the Dice coefficient. Subse-
quently, the model employs this dictionary to generate new word-aligned sentences
C token by token. Following this, the model incorporates an additional loss term
between the predicted tokens and the word-aligned sentences, providing explicit
supervision, as illustrated in Equation 3.2.4.

Loss = Crossentropy(A,B) + Crossentropy(A,C)

where A is the predicted output and B is the reference. When there is additional
term emphasizing the word alignment during training, the pre-trained word embed-
ding is predictably not badly influenced by traditional DAD training.

The word embedding issue cannot be solved purely on DAD because there are many
shared character sequences and its filtering process cannot distinguish them. The
different BPE tokens from the two languages are few (4400 unique En tokens out of
39984 tokens for De-En translation task in the Ninth Workshop on the WMT14 De-
En dataset) which would impair the effects of the attention mechanism. Also, DAD
would not be forced to learn relationships between tokens from different languages.
With the flaws of DAD, distinguishing between shared character sequences would
enhance the filtering process’s effectiveness because this way the filter dictionary
would only include tokens from the target language. The next subsection explains
the detailed approach for dealing with the issue.
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3.2.5 Data augmentation: LBPE

For traditional word tokenization, BPE[18] tokens are effective in restructuring the
vocabulary, transitioning from single characters to sequences within a single lan-
guage. The principle of how BPE tokens are generated is demonstrated in three
steps. First, the initial dictionary consists of single characters. Then, it counts the
frequency of combinations of characters in the dictionary and selects the most fre-
quent ones to form new tokens in the dictionary. This process is repeated until it
reaches the stopping criteria.

However, the advantage of sharing sequences within a monolingual context proves
to be a drawback in a multilingual embedding space. This is because the shared
sequences may not convey the same meaning across different languages. There-
fore, this research introduces language-based BPE tokens (LBPE) to differentiate the
shared sequences originating from different languages as a method of data augmen-
tation strategy.

Inspired by Shon’s research on language embedding [50], this project revised the tra-
ditional BPE approach by appending language-specific indicators after BPE tokens,
as illustrated in Fig3.7. In other words, the BPE tokens would be revised with lan-
guage suffixes. In this representation, BPE@@ represents the original BPE tokens,
and lan serves as the language signal. For example, cat@@ would be transformed
into cat@@en. (It’s worth noting that in experimentation, for implementation con-
venience, it might appear as cat@@ @1@ , representing the source or target lan-
guage. Another reason for choosing this format is that, while some BPE tokens could
end with , very few tokens will contain both @ and simultaneously.)

Figure 3.7: LBPE

This has a significant impact on the dictionary. For instance, the original BPE dictio-
nary of the WMT14 De-En dataset has a size of 39,840, while the LBPE dictionary has
a size of 70,968. This difference indicates that there are 31,128 identical BPE tokens
being shared. Upon applying LBPE, there will be no identical character sequences
except for certain signals like commas. Each character sequence can have a distinct
representation in the embedding space, thereby eliminating confusion across differ-
ent languages. At the same time, the number of vocabulary size is increased thereby
increasing the representation capability of the model. Additionally, this approach
redefined the tokenizer, which is the format of data augmentation.

3.2.6 Combination of CAMLM and LBPE model

This research incorporates two modifications to DAD, which are individually applied
first and then combined. Regarding LBPE, the focus is on the dataset itself, resulting
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in changes to the dataset and its corresponding dictionary according to the rule
described earlier. As for the CAMLM-like component, its primary objective is to
enhance word embeddings. Consequently, integration should occur before the main
training phases.

As mentioned previously, CAMLM from the Ernie-M model applies distinct attention
strategies to prevent information leakage from a single language. Following the ap-
plication of the attention strategy, token embeddings are enhanced by incorporating
similarities between pairs of languages. Hence, this research adopts techniques akin
to pre-trained models to replace the word embeddings within the DAD model, which
is the design of the combination model, which utilizes the language of the tokens as
a prompting indicator. The approach is shown in Fig3.8.

Figure 3.8: Combination model architecture

With the size of X, Y concatenated, the language pair with masks is fed into the
Embedding Matrix, and the transformer block undergoes training. The left portion
resembles a CAMLM-like network. It needs to be trained prior to commencing the
main combined model training. Subsequently, the DAD network is trained, utilizing
the same Embedding Matrix as the left network, and the Encoder is initialized with
relevant parameters from the transformer block of the left network. In addition, the
encoder would be regarded as a whole component to hold the information of the pre-
trained model instead of just one embedding layer. Therefore, the whole encoder,
including multi-head self-attention, is also initialized with relevant parameters from
the transformer block. This enables the DAD network to draw benefits from the pre-
trained left network. DAD now can have word embeddings without information
leakage from other languages, which potentially enhances accuracy and reduces
training time.

The aforementioned strategy aims to partially alleviate target-side dependency is-
sues through improved word embeddings that differentiate words across languages.
However, the results from running the model indicate that the combined approach
falls short compared to individual methods, especially the LBPE strategy (further de-
tails discussed in Chapter 4). This limitation might be attributed to LBPE’s introduc-
tion of a larger vocabulary size, which complicates the training of the CAMLM-like
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module because it provides more parameters to be trained. Additionally, conven-
tional translation strategies typically involve considering only one language on the
source side, leading the CAMLM-like encoder to implicitly learn language-specific
effects. In essence, since all tokens inputted into the encoder originate from a single
language, the encoder might inadvertently treat language as a latent feature, thereby
influencing the clustering of word embeddings not solely based on semantics, but
also due to language-related factors. Therefore, the next subsection introduces a
data-mixing strategy and language embedding layer to mitigate these issues.

3.3 Language embedding layer and Mixed data

LBPE can distinguish the tokens with their language sign for the same characters but
have a large vocab size for more parameter training to verify the effects of language
promption data augmentation strategy. This research model aims to maintain the
idea of language signs but reduce the number of parameters and vocab size. There-
fore, as the embedding layer in the encoder extracts different aspects of features,
this work designs a language embedding layer on top of the current embedding lay-
ers. The input is the language sign and the output is the hidden state with the same
dimension as the other embedding hidden states, shown in Eq3.1. Then, similar to
the position embedding, the language embedding is added to the hidden state of
embedding, shown in Eq3.2.

Emblanguage = f(sign) (3.1)

h = h(other) + h(Emblanguage) (3.2)

This method is expected to reduce the vocab size but retain the differences if they are
from a different language because it allows the same character sequence to create
shared token embedding but with different language embedding. However, there
is one issue that still exists, since the source side data will only be from one single
language, which leads to the input of the language embedding layer remaining the
same, and then influencing the effect of the CAMLM-like module.

To solve this issue, this work proposes the mixed data strategy. Instead of translating
from one language to another language, the data set would be shuffled more multi-
lingually. There would be language from both the source side and the target side.
For example, for the De-En translation task, there would be English and German as
sources and targets at the same time. This way, the encoder would have multi-lingual
input and the effects of the language from encoding would be mitigated. Also, the
input of the language embedding layer would not stay the same.

3.4 WDAD

As stated above, multiple methods have been proposed. Some aim to address word
alignment issues, while others focus on shared character sequences or dataset-related
issues. WDAD is a combination of the best-performing models from each component.
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The base architecture will still remain the same as DAD, but there are choices regard-
ing how to supervise word alignment and the data augmentation strategy. Moreover,
choices from the two aspect of improvements will not contradict each other for the
changes made in architecture.
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Evaluation and Experiments

4.1 Datasets

The experiments include reproducing the DAD result on the benchmark WMT14 De-
En dataset and also evaluating on the multi30k data set and WMT16 En-Ro dataset.

The Ninth Workshop on Machine Translation (WMT) is widely used in NMT task
experiments and involves many language pairs including English, French, German,
Russian etc. These are mainly taken from [51] and used to check the performance
of NMT models. It has approximately 4.5M sentences in De-En task. Multi30k is
another smaller data set including language pairs to examine the NMT model. It has
approximately 30,000 sentences in De-En task[52].

This research mainly focused on translating from German to English (De-En) task.
It has 4.5M pairs of language, for which this report applies the same prepossessing
of the DAD paper[14]. The NAT models in this experiment are trained on distilled
data, which is also the same as DAD[14]. For implementation evaluation, multi30k
is selected and this research used the pre-processing step on Fairseq[53].

Additionally, to assess the scalability of the research model, an additional dataset
was incorporated from WMT16, akin to the one used in WMT14. Specifically, we
focused on the En-Ro dataset within this collection, which comprises 608,319 exam-
ples—slightly smaller in size compared to the De-En dataset.

4.2 Comparative approaches

This research contains two primary solution ideas. In order to assess the individ-
ual contributions of each component, and the combined impact, four experiments
were designed: LBPE alone, CAMLM replacement alone, the combined use of LBPE
and CAMLM, and the baseline Vanilla DAD. In other words, for LBPE, this report
utilizes a distinct dictionary with a new tokenizer, while for CAMLM, it substitutes
the encoder of DAD. For the combination methods, both the tokenizer and encoder
are replaced simultaneously. Additionally, this work conducts additional training
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experiments focusing solely on the third phase of DAD. This approach is based on
the assumption that three-phase training might be overly potent, overshadowing the
CAMLM training. The basic analysis is mainly focused on the WMT De-En dataset.

Given the limitations of combined work discussed earlier, this work conducts addi-
tional comparative experiments to evaluate the effectiveness of the newly designed
strategies, namely CAMLM and CAMLM + language embedding, when applied to
DAD. The goal is to assess whether these strategies mitigate the identified limi-
tations. Furthermore, experiments involving CAMLM + word alignment supervi-
sion are conducted to investigate whether word alignment supervision addresses
the challenges associated with word embedding(generated by CAMLM) impairment
caused by DAD. There are additional comparative experiments in Section 4.6 for
sanity check about the effects of CAMLM and data augmentation strategy.

4.3 Hyperparameters

To maintain parallelism with the DAD paper, all hyperparameters within the DAD
model remain unchanged, which is also consistent with the research by Qian’s team
[35]. For both datasets, the base-Transformer was employed, with a hidden dimen-
sion of 512, 8 multi-heads, and 6 encoder and decoder layers.

Additionally, in this experiment, the learning rate and early stopping patience num-
ber are fine-tuned as they significantly influence convergence speed and the potential
for overfitting. The patience number signifies the number of epochs during which
the validation set score fails to exceed the best score, after which training halts.
Given the substantial size of the dataset, training a single epoch of multi30k takes
approximately 5 minutes, while WMT14 De-En requires around 1 hour and 20 min-
utes, even with the utilization of 5 GPUs (GeForce RTX 2080 Ti Rev. A) in parallel.
Extending the patience duration would result in increased computation time while
a shorter patience duration could result in underfitting. Ultimately, this report em-
ploys a patience value of 4 for WMT14 and 10 for multi30k, while the learning rate
is set to 1e-4.

Additionally, the parameter max tokens is also adjusted to accommodate GPU limi-
tations and gradient descent considerations. A larger max tokens value accelerates
training by truncating and grouping sentences more effectively, thereby allowing
weight backpropagation to be calculated on a larger amount of data. This advan-
tage resembles that of batch gradient descent. Finally, this research adopts 2048
max tokens since the memory of the GPU is not enough for more tokens. However,
this would impair the final performances of the model because the texts in the test
set exceeding the max tokens would be truncated. It is shown that for short texts in
a validation set of WMT14, the blue score is three times that of long texts in the test
set. This might be one reason why the experiments are not up to the score reported
in Jiaao et al.’s research[14].

Importantly, this experiment compares the efficacy of using a network to learn po-
sitional embeddings against directly utilizing sinusoidal positional encoding, as out-
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lined in Transformers[6]. The former yields approximately +1.5 BLEU score increase
compared to the latter. This finding suggests that learnable positional embeddings
require much training time but offer a better fit for the dataset itself.

4.4 Results

Following the fine-tuning of all hyperparameters, this report initially presents the
results for multi30k, which are displayed in Table 4.1. For this experiment, five
repeated tests were conducted using different seeds, and the average is reported.
The ”DAD trained for NAT phase” section refers to testing without the at-forward
and at-backward phases, only using the nat phase for comparison between the 3-
phase training experiment.

The following paragraphs mainly analyze the effects of CAMLM and the data aug-
mentation strategy LBPE with theoretical support. The dataset Multi30k serves as
the sanity check and debugging dataset, while the formal analysis is conducted on
the WMT14 and WMT16 datasets. After elucidating the effects of these components
and the combined model, the subsequent paragraphs delve into additional models,
including word-alignment supervision, language embedding & mixed data strategy.
And more other comparative experiments are explained in the next few sections.

The reason for using this ablation study experiment is that the last phase of DAD
combines the training strategies of the first two phases, which involve acquiring in-
formation from either previous or subsequent tokens. In other words, the last phase
represents an enhanced training strategy composed of the first two phases. This
also explains why the work assumes that the first two phases are redundant. Also,
training with a similar strategy repeatedly would be assumed to diminish the ef-
fectiveness of CAMLM-like components because it is the pre-trained part, and has
low capability to maintain its information in another training strategy. However,
the results confirm the assumption that the effects of CAMLM components will be
diminished by the initial training stages was incorrect. This can be attributed to the
fact that the CAMLM component primarily concentrates on improving word embed-
dings, whereas the first two phases prioritize gathering content-related information.
These two aspects of information acquisition could differ significantly even though
the three-phase training has proved powerful enough. Hence, in order to save com-
putational time, this research did not conduct experiments on ”DAD trained for the
nat phase” for WMT14.

Table 4.1: Multi30k result

Model BLEU score
Vallina DAD 32.234
LBPE DAD 32.366

CAMLM DAD 31.17
Combined model 31.372

29



Chapter 4. Evaluation and Experiments 4.4. RESULTS

The LBPE works slightly better while CAMLM performs slightly worse than the base-
line for multi30k. This discrepancy can be attributed to the simplicity of the multi30k
dataset. Due to the brevity of sentences and the small vocabulary size, even if the
word embedding space lacks clustering based on semantic meaning, the translations
can still make the alignment. Therefore, this research demonstrates it is worth in-
vestigating for WMT14 De-En experiments.

For WMT14 De-En, this report conducts three repeated tests and reports the average
results, as shown in Table 4.2.

Table 4.2: WMT14 De-En result

Model BLEU score
Vallina DAD 19.213
LBPE DAD 19.84

CAMLM DAD 19.613
Combined model 19.31

The results indicate that LBPE proves effective for both datasets, while CAMLM’s
effectiveness varies. Moreover, the combined components of the two revisions also
demonstrate effectiveness. (Note that this research does not achieve the scores pre-
sented in DAD[14], which could be due to variations in hyperparameters or differ-
ences in hardware configurations.)

As depicted in Table 4.1 and Table 4.2, the BLEU score for the LBPE experiments on
both datasets increases, even achieving a +0.6 BLEU score improvement for WMT14
De-En. This enhancement might be attributed to the substantial number of shared
word tokens. This is the shared sequence problem mentioned in Section 3.1 that
could potentially confuse the model’s ability to adjust token embeddings accurately.
This could be verified by cleaning out all samples containing shared character se-
quences and comparing the model’s performances. LBPE addresses this issue by
assigning distinct embeddings to tokens from different languages, allowing them to
be separately trained while maintaining consistency in terms of content usage. For
example, ant@@ en in antibody and ant@@ de in enseignant would be trained
independently but not in the original way that the token embedding of ant would
lead to two different word sections in embedding space. This may understandably
become more accurate when the language shares more words that carry distinct
meanings because now the words in different languages can only have one direction
to learn. English and French exhibit similarities, resulting in numerous shared words
that express identical meanings, like justice or counsel and conseil, thereby leading to
redundancy at this stage.

The influence of the CAMLM component is small on the final BLEU score perfor-
mance for WMT14 De-En, which is +0.4 BLEU points. This is because CAMLM is
preventing information leakage and CAMLM’s ability to enhance word embedding
clustering is a positive indication of progress (further elaborated in the following
section). The enhancement of word embeddings could yield even greater effective-
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ness when dealing with more than three languages, as this would introduce more
complexity.

To integrate both solutions, this research conducted experiments using combined
model. It outperforms the baseline BLEU score (+0.1) slightly, although it doesn’t
achieve the same level as the two methods acting independently. This could poten-
tially be attributed to the fact that LBPE increases the vocabulary size, while CAMLM
reduces the training content by rendering some identical character sequences dis-
tinct. The later experiments on CAMLM with a language embedding layer would
test whether reducing the vocab size could mitigate this. One conceivable approach
might involve discarding LBPE and instead utilizing language embeddings to differ-
entiate tokens from different languages. By doing this, more corpus can be used to
train individual character sequences compared to the cases where shared sequences
are distinguished by LBPE when fewer corpora are applied to train the tokens, and
simultaneously, language embeddings could be fine-tuned to better suit the data.

Therefore, this work reports the experiments of the language embedding layer. This
would keep the advantages of both CAMLM and LBPE but with fewer parameters to
train. Also, the mixed data strategy is propsed to address the issue that DAD might
impair CAMLM has a method proposed, and there are experiments on this. This
work performs experiments on the WMT14 De-En pair and WMT16 En-Ro pair, with
the results shown in Table4.3

Table 4.3: BLEU Scores for Different Methods on More Data Pairs

Data pair Method BLEU score

WMT14 En-De
Vallina DAD 17.45
CAMLM 17.64

WMT14 mixed data
Vallina DAD 16.2
CAMLM 18.12
CAMLM + Language Embedding 16.66

WMT16 En-Ro
Vallina DAD 20.5
CAMLM 21.2

WMT16 Ro-En
Vallina DAD 21.15
CAMLM 22.12

WMT 16 mixed data
Vallina DAD 20.45
CAMLM 21.46
CAMLM + Language Embedding 20.64

The table above shows that for more data pairs in different datasets, which resonates
with the results on WMT14 De-En and shows the effects of the mixed data strategy
and language embedding layer. CAMLM gives quite good performances. Notably, for
the WMT16 dataset, there is an obvious score increase with up to +1 BLEU scored.
This might be because WMT16 does not have too many long texts that are truncated,
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compared to WMT14. Also, there are smaller discrepancies between the BLEU score
of validation and test set in WMT16 (approximately less than 1 bleu score) than that
of WMT14 (around 39 vs 19 in validation and test respectively), which might reveal
the test set in WMT14 are not clean enough.

Notably, the combination of CAMLM and the Language embedding layer has slight
improvements over the baseline but is a bit worse than the CAMLM on its own. This
is potentially because the effects of CAMLM and the language embedding layer are
opposite. As mentioned above, CAMLM aims to avoid information leakage, while the
language embedding layer distinguishes the tokens from different languages but it
makes the model implicitly learn the information from one side. This is because the
tokens in one sentence would have the same input language codes and encoding the
language codes implicitly emphasizes the information from one side. This reduces
the vocab size but still has space for further improvement.

To address the challenge of CAMLM pre-trained embeddings being affected by sub-
sequent DAD training, this research introduces explicit word alignment supervision
during DAD training by modifying the loss function (as discussed in Section 3.2.4).
The study selects the WMT16 ro-en dataset for experimentation and obtains an ex-
ternal word alignment dictionary by applying Dice’s coefficient with the FastAlign
toolbox1. A portion of the dictionary is illustrated in Fig4.1.

1https://github.com/clab/fastalign.git
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Figure 4.1: Word alignment dictionary

The alignment of the ro-en language pair appears to be robust based on the graph.
However, there are instances of minor errors, such as care being aligned to what,
possibly due to ambiguous contexts in certain training sentences. Leveraging this
dictionary, the study generates aligned sentences for supervision. The training is
currently in progress, and the results will be available till the time of the presenta-
tion.

Returning to the issues of over/under translation and the multi-modal problem that
NAT has, the following section will analyse the over-translation challenge by com-
paring the four base experiments on the over-translation challenge, either LBPE or
CAMLM help mitigate over-translation to some extent, resulting in a reduction in the
number of consecutive outputs, as illustrated in Fig4.2 and the multi-modal problem
is discussed in Section 4.5.3. The mitigation of over-translation is because the lan-
guage signals prompt the DAD to give greater consideration to the semantic meaning
of words.
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Figure 4.2: Number of consecutive tokens for four methods

As depicted above, the Vanilla DAD applied to the WMT14 dataset produced a total
of 9399 consecutively repeated tokens. For example, the phrase This is is a dog
contributes to 1 consecutive repeated token, representing the existing issue of over-
translation. In comparison to the baseline, combined model exhibits a decrease of
approximately -400, while the two components functioning independently manifest
a reduction of approximately -900. This suggests that the combined model methods
effectively address one of the challenges associated with NAT.

4.5 Qualitative Results

4.5.1 Pre-trained CAMLM

The outputs of masked tokens are coherent and sensible. For more rigorous technical
verification, the previous plan includes using the Bert model as a baseline compari-
son. However, due to computational time constraints, the model has not been fine-
tuned extensively. Nevertheless, the results from DAD could also serve as supporting
evidence, indicating that CAMLM is well-pretrained.

4.5.2 Shared embedding space comparison

To confirm the improvement in word embedding within the joint embedding space,
this report employs T-SNE[54] to reduce the embedding dimensions to 2 for better
visualization. The graphs presented before (3.3, 4.3, 3.6) compare the embeddings
of certain non-BPE token words (those not ending with @@) within the shared
embedding space.
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Figure 4.3: CAMLM + DAD

In the figures above, the blue points represent tokens from German (De), while the
red points correspond to English (En) tokens. These points are generated by the
embedding layers of the best checkpoint model of CAMLM with DAD training. The
tokens tend to cluster gradually based on their semantic meanings rather than their
languages.

This provides evidence that CAMLM effectively enhances word embeddings, result-
ing in improvements in the final BLEU score. The reduction in cluster centre dis-
tances contributes to more accurate word alignment. However, when CAMLM is
integrated with DAD, its performance doesn’t match that of standalone CAMLM.
This discrepancy could come from the influence of the three robust training phases
or the decoding process, which focuses solely on one language. Consequently, this
approach might inadvertently impact the word embeddings of the other language.
Also, this might be due to the conventional encoding strategy that the translation
task has, which is encoding the tokens all from one language. Therefore, this work
tries CAMLM with a Language embedding layer on mixed data shown in Fig4.4.
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Figure 4.4: CAMLM + Language Embedding on Mixed data

As the figures above show, the blue points represent tokens from German (De), while
the red points correspond to English (En) tokens. These points are generated by the
embedding layers of the best checkpoint model of CAMLM with Language Embed-
ding on mixed data after DAD training. The flaw of the CAMLM with DAD training,
that the tokens fall back to be separate according to language, is mitigated.

4.5.3 Case study

To validate mitigation for the challenges of NAT, namely underfitting and the mul-
titude of translations, this research has selected specific cases for comparison, as
presented in Table 4.4.
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Table 4.4: Case study

Reference Children’s dreams come true.
Vallina DAD K’s Dremes mes come true
LBPE only Children’s Dreres come True.

CAMLM only Children’s ams Get True
Combined

model
Child Dreams come True

Reference Built by experts.
Vallina DAD Experts experts.
LBPE only Designed by ts.

CAMLM only constructed by experts.
Combined

model
Built by experts.

Reference We must stay composed and keep it up .
Vallina DAD This is to continue mly mly .
LBPE only That is to quietly continue .

CAMLM only This is to to continue calmly .
Combined

model
This is to continue quiecontinue .

It can be seen that regarding the three improving methods, it has translated children
or child successfully, which is the under translation problem in Vanilla DAD. Also, the
multitude problem Get true in example of CAMLM only has been mitigated by other
improvement methods. The other two examples demonstrate that CAMLM and LBPE
address underfitting and the multi-modal problem.

This case study also highlights a challenge: there are errors in word alignment, par-
ticularly involving certain BPE tokens. For instance, the translation of Dremes might
include Dre@@ and mes@@, whereas Dreams consists of Dre@@ and ams@@. Con-
sequently, in the case of CAMLM only, there is only a single word of ams, which
conveys little meaning.

4.6 Comparative experiments analysis

CAMLM effects together with pre-trained advantages The CAMLM experiments
are trained by initializing with pre-trained BERT parameters to expedite training
and enhance performance simultaneously. While CAMLM is indeed a pre-trained
method contributing to performance improvement, its impact extends beyond mere
pre-training; it also leverages the benefits of word alignment power. For compari-
son, the model trained without applying BERT initialization required 30 additional
epochs to converge and experienced a decrease of over 2 points in BLEU score.

The number of parameters of LBPE and shared embedding space There is an
increasing number of parameters in LBPE tokenization compared to traditional BPE.
Additionally, there is a slight decrease in the shared embedding space compared to
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separate embedding space. Although DAD has to apply shared embedding space, it
is worth discussing the trade-off balance regarding the number of parameters. To
valid the effects of data augmentation LBPE and the influence of increased num-
ber of parameter, this work retrained a traditional BPE vocabulary on the distilled
dataset WMT14 De-En, resulting in a vocabulary size of 56k in the end. Using the
same training strategy, this method yields a 20.99 BLEU score, which is a +2 point
improvement over LBPE. This significant enhancement in performance is attributed
to data augmentation and the improved representation of word embeddings. These
comparative experiments demonstrate the effects of data augmentation. However,
they also indicate that LBPE may not be the best method of data augmentation,
especially when considering the results of the language embedding layer.

4.7 Sensitivity and limitations

The methods above consistently improve performance compared to the original DAD
model. The following graph takes the language pair De-En in WMT14 as an example
and illustrates the variations from repeated experiments with different seeds in Fig
4.5. It is evident that, for both CAMLM and LBPE components, significant improve-
ments are observed across all seed values.

Figure 4.5: Deriviation of experiments

Even though there is an improvement in WDAD methods and its components, there
are still some limitations. As shown above, the scores for multi30k are not signifi-
cantly different, suggesting that the model revision is not sensitive to small datasets.
This could be attributed to the complexity of the original model, which is sufficient
for this limited-scale data. However, a noticeable increase is observed in the case of
WMT14, where the corpus consists of 4.5 million pairs.
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Another limitation arises from the complexity of natural language. Some of the
reference translations even appear to be less sensible or less straightforward than
the model output. For instance, the source sentence Wasser ist weiterhin kostenlos is
translated as Water continues to be free, whereas the reference translation states It
will still give away water. At times, the reference translations may not be immediately
comprehensible or simple enough for non-native speakers. This happens because
references in NAT have an accumulation of errors due to downstream erroneous
translations of original references. This complexity can make it more challenging for
models to grasp the semantic meaning or receive direct supervision. However, it is
evident that the model effectively learns word alignment, as the translation remains
coherent. Thus, due to the significant divergence between human-crafted speaking
habits and model generative strategy, the BLEU score might turn out to be low.

Furthermore, the enhancement of word embeddings relies on the assumption that
there exist numerous shared character sequences between languages, like English
and French. However, in cases where there are few or no shared character se-
quences, such as between English and Chinese, the utility of LBPE becomes dimin-
ished.

Moreover, this study solely considers language pairs individually. In the field of
cross-lingual research, if more than two languages are considered collectively, the dy-
namics can change considerably. With multiple languages in consideration, a larger
corpus could be utilized to reposition word embeddings within the joint embedding
space. Additionally, each language introduces its own unique expression habits,
leading to potential misunderstandings. Take idiomatic expressions as an example;
translating idioms from English to Chinese presents difficulties, and even humans re-
quire contextual cues or examples for comprehension. When handling multi-lingual
languages, such as translating from Chinese to Japanese and translating Japanese to
English idiom, the risk of information loss becomes even more accumulative.

The BPE token itself possesses inherent limitations, which makes it challenging to
determine whether tokens have been clustered from a semantic perspective. While
the BPE token is a component of the word and carries some level of meaning from the
word itself, it is generated based on frequency counts rather than semantic meaning.
Consequently, the clustering process might not be as intuitive. For instance, the
BPE token hell could be part of both hell and hello, despite their distinct meanings.
Moreover, the rules for splitting words to obtain BPE tokens vary for different words,
leading to situations where BPE tokens might unexpectedly form components of
unrelated words. This aspect could potentially be explored as a future research
direction.

Finally, this work compares the performance of the NAT and AT models in each data
pair set, shown in Table4.5. It was shown that there are still gaps for accuracy
between AT and NAT though NAT would speed up the training process to a large
extent.
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Table 4.5: NAT vs AT

Data pair Method BLEU score

WMT14 De-En
NAT 19.213
AT 27.72

WMT14 En-De
NAT 17.45
AT 25.4

WMT16 En-Ro
NAT 20.5
AT 33.13

WMT16 Ro-En
NAT 21.15
AT 31.44
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Conclusions and future work

5.1 Conclusion

This work primarily focuses on NAT models within the context of XMT. Upon re-
viewing existing literature on this subject, the primary challenge observed in NAT
pertains to the absence of target-side dependency. This issue manifests in two dis-
tinct challenges: over-translation and under-translation, and the multitude problem.
While data set distillation can significantly address the multitude problem, the re-
maining challenges persist in cross-lingual translation. Hence, the DAD model has
been formulated to alleviate these concerns, although certain limitations remain to
be solved.

Within the context of XMT and NAT, this study aims to enhance performance from
two perspectives: improving word embeddings within a shared embedding space
and distinguishing shared character sequences from various languages. Drawing in-
spiration from Ernie-M, this report incorporates CAMLM as a component to be com-
bined with DAD. Additionally, a data augmentation solution named LBPE has been
devised to address the challenge of identical character sequences. Consequently,
these two concepts form the WDAD model. Also, more methods are proposed to
make up for the flaws of each model.

As a result, the BLEU score has improved by approximately 0.5 points. Addition-
ally, word embeddings tend to cluster more according to their semantic meanings.
However, the combined model does not perform as well as the two ideas individually.
There is still room for future investigation. The table below summarizes the methods
employed in this work and provides essential comparisons as the conclusion.
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Table 5.1: Strategies Overview

Strategy Performance Advantages Disadvantages

Vanilla
DAD

Baseline(0)

Tackling target
side

dependency to
some extend

Word alignment
issue & Shared

character
sequence issue

CAMLM 3

Cluster word
only according

to semantic
meaning

Pre-trained
embedding

influenced by
DAD later
training

Data aug-
mentation

(LBPE)
2

Tackling shared
character

sequence issue

vocab size
mechanically
doubled up

CAMLM +
LBPE

2
Combination of
above methods

pre-trained
embedding

worsely
influenced &

hard to
converge for

LBPE
vocabulary

Data aug-
mentation
(others)

4

Better word
representation
and increased

diversity

hard to save
training time &

fail to solve
shared

character
sequence issue

Word-
alignment
supervi-

sion

To be experi-
mented

(expected 4)

Avoiding
pre-trained

model
influenced by

DAD later
training

requirement of
external

pre-trained
word-aligned

dictionary

WDAD
(word

alignment
+ data

augmenta-
tion)

To be experi-
mented

(expected 5)

Combination of
best performed

methods
-
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5.2 Future work

More dataset Multi30k is a small-scale dataset and can only validate the correctness
of the implementation. It consists of only one set of experiments and one language
pair. If more language pairs were considered, the results could be more convincing.
There are more language pairs in WMT14 and WMT16, and also famous data set in-
cluding IWSLT datasets (International Workshop on Spoken Language Translation)1.

Cross-lingual dataset This model only considers two languages at a time. If more
than two languages were considered, there might be more interactions between each
pair of languages, and CAMLM could become more effective.

Word alignment experiments & CAMLM components revision The CAMLM model
can cluster word embeddings effectively, but its impact is hindered by DAD. The
decrease in performance may be attributable to either the three training phases or
the decoding process, which considers only one language and reclusters the word
according to the language. If these aspects were modified, the performance could
be expected to improve, as it aligns with the idea that a smaller distance between
cluster centres leads to a better BLEU score for the NAT model. The experiments of
word alignment supervision is ongoing and will be left for future research.

Data augmentation modification The LBPE strategy works well, but it does not
combine effectively with the CAMLM adaptor. This could potentially be due to LBPE
not being the most effective data augmentation strategy. Attempting to find the best
data augmentation strategy while adhering to the principle of dealing with shared
character sequences could potentially lead to further improvements.

WDAD work The CAMLM and data augmentation or language embedding layer
would deal with either of the issues. However, the combined method would not
work synergically. This should be one research direction.

1https://iwslt.org/
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