Download PDFOpen PDF in browser

Centrality Metrics for Water Distribution Networks

10 pagesPublished: September 20, 2018


Complex Network Theory (CNT) studies theoretical and physical systems as networks, considering their features deriving from the internal connectivity between elements defined as vertex and links. In order to quantify the importance of these elements in real networked systems, researches proposed several centrality metrics.
The use of CNT centrality metrics for analysis, planning and management of infrastructure networks (streets, water systems, etc.), for example in terms of reliability and vulnerability, is today a relevant issue also considering their influences in socio- economics and environmental matters. From CNT standpoint, water distribution networks (WDNs) are infrastructure networks that can be analyzed considering some peculiar features deriving from their spatial characteristics.
The paper focuses on CNT centrality metrics and proposes novel hydraulic centrality metrics useful for understanding the WDNs behavior. Furthermore, the study is intended to evaluate the feasibility of coupling hydraulic and topologic centrality metrics based on links, in order to obtain information that are more useful from the hydraulic point of view. This way, centrality metrics of the CNT become a complementary tool to hydraulic modelling for WDNs analysis and management.

Keyphrases: Centrality metrics, complex network theory, water distribution networks

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 1979--1988

BibTeX entry
  author    = {Antonietta Simone and Luca Ridolfi and Daniele Laucelli and Luigi Berardi and Orazio Giustolisi},
  title     = {Centrality Metrics for Water Distribution Networks},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  pages     = {1979--1988},
  year      = {2018},
  publisher = {EasyChair},
  bibsource = {EasyChair,},
  issn      = {2516-2330},
  url       = {},
  doi       = {10.29007/7lxd}}
Download PDFOpen PDF in browser